Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Breed ; 44(9): 57, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39228865

RESUMO

The rice panicle is the principal organ to influence productivity and traits affecting panicle architecture determine sink size and yield potential. Improving panicle architecture may be effective in increasing yield under low-input conditions, but which traits are of importance under such conditions and how they are genetically controlled is not well understood. Using recombinant inbred lines (RILs) derived from a cross between a modern variety IR64 and a low fertility tolerant accession DJ123, quantitative trait locus (QTL) mapping was conducted under high soil fertility in Japan and low fertility in Madagascar. Among QTL for panicle length (PL) detected, the DJ123 allele increased rachis length at qCL1 and qPL9, while the IR64 allele increased primary branch length at qPL7. DJ123 further contributed two QTL for grain width whereas IR64 contributed two grain length QTL. Analysis of lines carrying different combinations of detected QTL indicates that rachis and primary branch lengths are independently regulated, explaining strong transgressive segregation for PL. The positive effects of PL-related QTL were further confirmed by a genome-wide analysis of allelic states in two breeding lines that had been selected repeatedly for total panicle weight per plant under low input conditions. This study provides the genetic basis for complex panicle architecture in rice and will aid in designing an ideal panicle architecture that leads to increased yield under low fertility conditions. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01494-5.

2.
Theor Appl Genet ; 135(7): 2265-2278, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35618915

RESUMO

KEY MESSAGE: A genomic prediction model successfully predicted grain Zn concentrations in 3000 gene bank accessions and this was verified experimentally with selected potential donors having high on-farm grain-Zn in Madagascar. Increasing zinc (Zn) concentrations in edible parts of food crops, an approach termed Zn-biofortification, is a global breeding objective to alleviate micro-nutrient malnutrition. In particular, infants in countries like Madagascar are at risk of Zn deficiency because their dominant food source, rice, contains insufficient Zn. Biofortified rice varieties with increased grain Zn concentrations would offer a solution and our objective is to explore the genotypic variation present among rice gene bank accessions and to possibly identify underlying genetic factors through genomic prediction and genome-wide association studies (GWAS). A training set of 253 rice accessions was grown at two field sites in Madagascar to determine grain Zn concentrations and grain yield. A multi-locus GWAS analysis identified eight loci. Among these, QTN_11.3 had the largest effect and a rare allele increased grain Zn concentrations by 15%. A genomic prediction model was developed from the above training set to predict Zn concentrations of 3000 sequenced rice accessions. Predicted concentrations ranged from 17.1 to 40.2 ppm with a prediction accuracy of 0.51. An independent confirmation with 61 gene bank seed samples provided high correlations (r = 0.74) between measured and predicted values. Accessions from the aus sub-species had the highest predicted grain Zn concentrations and these were confirmed in additional field experiments, with one potential donor having more than twice the grain Zn compared to a local check variety. We conclude utilizing donors from the aus sub-species and employing genomic selection during the breeding process is the most promising approach to raise grain Zn concentrations in rice.


Assuntos
Biofortificação , Oryza , Grão Comestível/química , Grão Comestível/genética , Estudos de Associação Genética , Genômica , Oryza/genética , Melhoramento Vegetal , Zinco/análise
3.
Theor Appl Genet ; 134(10): 3397-3410, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34264372

RESUMO

KEY MESSAGE: Despite phenotyping the training set under unfavorable conditions on smallholder farms in Madagascar, we were able to successfully apply genomic prediction to select donors among gene bank accessions. Poor soil fertility and low fertilizer application rates are main reasons for the large yield gap observed for rice produced in sub-Saharan Africa. Traditional varieties that are preserved in gene banks were shown to possess traits and alleles that would improve the performance of modern variety under such low-input conditions. How to accelerate the utilization of gene bank resources in crop improvement is an unresolved question and here our objective was to test whether genomic prediction could aid in the selection of promising donors. A subset of the 3,024 sequenced accessions from the IRRI rice gene bank was phenotyped for yield and agronomic traits for two years in unfertilized farmers' fields in Madagascar, and based on these data, a genomic prediction model was developed. This model was applied to predict the performance of the entire set of 3024 accessions, and the top predicted performers were sent to Madagascar for confirmatory trials. The prediction accuracies ranged from 0.10 to 0.30 for grain yield, from 0.25 to 0.63 for straw biomass, to 0.71 for heading date. Two accessions have subsequently been utilized as donors in rice breeding programs in Madagascar. Despite having conducted phenotypic evaluations under challenging conditions on smallholder farms, our results are encouraging as the prediction accuracy realized in on-farm experiments was in the range of accuracies achieved in on-station studies. Thus, we could provide clear empirical evidence on the value of genomic selection in identifying suitable genetic resources for crop improvement, if genotypic data are available.


Assuntos
Cromossomos de Plantas/genética , Fazendas/estatística & dados numéricos , Oryza/crescimento & desenvolvimento , Oryza/genética , Fenótipo , Melhoramento Vegetal/métodos , Seleção Genética , Mapeamento Cromossômico/métodos , Fazendeiros , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
5.
Front Plant Sci ; 15: 1293831, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414643

RESUMO

Introduction: One-third of the human population consumes insufficient zinc (Zn) to sustain a healthy life. Zn deficiency can be relieved by increasing the Zn concentration ([Zn]) in staple food crops through biofortification breeding. Rice is a poor source of Zn, and in countries predominantly relying on rice without sufficient dietary diversification, such as Madagascar, Zn biofortification is a priority. Methods: Multi-environmental trials were performed in Madagascar over two years, 2019 and 2020, to screen a total of 28 genotypes including local and imported germplasm. The trials were conducted in the highlands of Ankazomiriotra, Anjiro, and Behenji and in Morovoay, a location representative of the coastal ecosystem. Contributions of genotype (G), environment (E), and G by E interactions (GEIs) were investigated. Result: The grain [Zn] of local Malagasy rice varieties was similar to the internationally established grain [Zn] baseline of 18-20 µg/g for brown rice. While several imported breeding lines reached 50% of our breeding target set at +12 µg/g, only few met farmers' appreciation criteria. Levels of grain [Zn] were stable across E. The G effects accounted for a main fraction of the variation, 76% to 83% of the variation for year 1 and year 2 trials, respectively, while GEI effects were comparatively small, contributing 23% to 9%. This contrasted with dominant E and GEI effects for grain yield. Our results indicate that local varieties tested contained insufficient Zn to alleviate Zn malnutrition, and developing new Zn-biofortified varieties should therefore be a priority. GGE analysis did not distinguish mega-environments for grain [Zn], whereas at least three mega-environments existed for grain yield, differentiated by the presence of limiting environmental conditions and responsiveness to improved soil fertility. Discussion: Our main conclusion reveals that grain [Zn] seems to be under strong genetic control in the agro-climatic conditions of Madagascar. We could identify several interesting genotypes as potential donors for the breeding program, among those BF156, with a relatively stable grain [Zn] (AMMI stability value (ASV) = 0.89) reaching our target (>26 µg/g). While selection for grain yield, general adaptation, and farmers' appreciation would have to rely on multi-environment testing, selection for grain [Zn] could be centralized in earlier generations.

6.
PLoS One ; 17(5): e0262707, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35584097

RESUMO

Rice (Oryza sativa L.) is a staple food of Madagascar, where per capita rice consumption is among the highest worldwide. Rice in Madagascar is mainly grown on smallholder farms on soils with low fertility and in the absence of external inputs such as mineral fertilizers. Consequently, rice productivity remains low and the gap between rice production and consumption is widening at the national level. This study evaluates genetic resources imported from the IRRI rice gene bank to identify potential donors and loci associated with low soil fertility tolerance (LFT) that could be utilized in improving rice yield under local cultivation conditions. Accessions were grown on-farm without fertilizer inputs in the central highlands of Madagascar. A Genome-wide association study (GWAS) identified quantitative trait loci (QTL) for total panicle weight per plant, straw weight, total plant biomass, heading date and plant height. We detected loci at locations of known major genes for heading date (hd1) and plant height (sd1), confirming the validity of GWAS procedures. Two QTLs for total panicle weight were detected on chromosomes 5 (qLFT5) and 11 (qLFT11) and superior panicle weight was conferred by minor alleles. Further phenotyping under P and N deficiency suggested qLFT11 to be related to preferential resource allocation to root growth under nutrient deficiency. A donor (IRIS 313-11949) carrying both minor advantageous alleles was identified and crossed to a local variety (X265) lacking these alleles to initiate variety development through a combination of marker-assisted selection with selection on-farm in the target environment rather than on-station as typically practiced.


Assuntos
Oryza , Mapeamento Cromossômico/métodos , Fazendas , Estudo de Associação Genômica Ampla , Madagáscar , Oryza/genética , Fenótipo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA