RESUMO
Many naturalistic behaviors are built from modular components that are expressed sequentially. Although striatal circuits have been implicated in action selection and implementation, the neural mechanisms that compose behavior in unrestrained animals are not well understood. Here, we record bulk and cellular neural activity in the direct and indirect pathways of dorsolateral striatum (DLS) as mice spontaneously express action sequences. These experiments reveal that DLS neurons systematically encode information about the identity and ordering of sub-second 3D behavioral motifs; this encoding is facilitated by fast-timescale decorrelations between the direct and indirect pathways. Furthermore, lesioning the DLS prevents appropriate sequence assembly during exploratory or odor-evoked behaviors. By characterizing naturalistic behavior at neural timescales, these experiments identify a code for elemental 3D pose dynamics built from complementary pathway dynamics, support a role for DLS in constructing meaningful behavioral sequences, and suggest models for how actions are sculpted over time.
Assuntos
Comportamento Animal , Corpo Estriado/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cálcio/metabolismo , Corpo Estriado/efeitos dos fármacos , Eletrodos Implantados , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Fotometria , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D1/genéticaRESUMO
A complete, 52-protein, 2.5 million dalton, Mediator-RNA polymerase II pre-initiation complex (Med-PIC) was assembled and analyzed by cryo-electron microscopy and by chemical cross-linking and mass spectrometry. The resulting complete Med-PIC structure reveals two components of functional significance, absent from previous structures, a protein kinase complex and the Mediator-activator interaction region. It thereby shows how the kinase and its target, the C-terminal domain of the polymerase, control Med-PIC interaction and transcription.
Assuntos
Complexo Mediador/química , Complexo Mediador/metabolismo , Modelos Moleculares , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Microscopia Crioeletrônica , Regulação da Expressão Gênica , Espectrometria de Massas , Fosforilação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMO
Interactions between biomolecules underlie all cellular processes and ultimately control cell fate. Perturbation of native interactions through mutation, changes in expression levels or external stimuli leads to altered cellular physiology and can result in either disease or therapeutic effects1,2. Mapping these interactions and determining how they respond to stimulus is the genesis of many drug development efforts, leading to new therapeutic targets and improvements in human health1. However, in the complex environment of the nucleus, it is challenging to determine protein-protein interactions owing to low abundance, transient or multivalent binding and a lack of technologies that are able to interrogate these interactions without disrupting the protein-binding surface under study3. Here, we describe a method for the traceless incorporation of iridium-photosensitizers into the nuclear micro-environment using engineered split inteins. These Ir-catalysts can activate diazirine warheads through Dexter energy transfer to form reactive carbenes within an approximately 10 nm radius, cross-linking with proteins in the immediate micro-environment (a process termed µMap) for analysis using quantitative chemoproteomics4. We show that this nanoscale proximity-labelling method can reveal the critical changes in interactomes in the presence of cancer-associated mutations, as well as treatment with small-molecule inhibitors. µMap improves our fundamental understanding of nuclear protein-protein interactions and, in doing so, is expected to have a significant effect on the field of epigenetic drug discovery in both academia and industry.
Assuntos
Núcleo Celular , Cromatina , Reagentes de Ligações Cruzadas , Humanos , Núcleo Celular/química , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Reagentes de Ligações Cruzadas/análise , Reagentes de Ligações Cruzadas/química , Transferência de Energia , Epigenômica , Inteínas , Irídio , Mutação , Neoplasias/genética , Fármacos Fotossensibilizantes , Ligação Proteica , Mapas de Interação de ProteínasRESUMO
Mediator is a universal adaptor for transcription control. It serves as an interface between gene-specific activator or repressor proteins and the general RNA polymerase II (pol II) transcription machinery. Previous structural studies revealed a relatively small part of Mediator and none of the gene activator-binding regions. We have determined the cryo-EM structure of the Mediator at near-atomic resolution. The structure reveals almost all amino acid residues in ordered regions, including the major targets of activator proteins, the Tail module, and the Med1 subunit of the Middle module. Comparison of Mediator structures with and without pol II reveals conformational changes that propagate across the entire Mediator, from Head to Tail, coupling activator- and pol II-interacting regions.
Assuntos
Subunidade 1 do Complexo Mediador/metabolismo , Aminoácidos/genética , Conformação Proteica , RNA Polimerase II/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/genéticaRESUMO
Pharmacologic agents capable of increasing kinase function would be useful for treating diseases associated with reduced kinase activity, such as inherited forms of Parkinson's disease. In this issue, Hertz et al. report an innovative approach for activating the Parkinson's-associated kinase PINK1 in cells with an ATP-derived neo-substrate.
Assuntos
Mitocôndrias/metabolismo , Doença de Parkinson/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Animais , HumanosRESUMO
BACKGROUND: Alveolar soft part sarcoma (ASPS) is a rare soft-tissue sarcoma with a poor prognosis and no established therapy. Recently, encouraging responses to immune checkpoint inhibitors have been reported. METHODS: We conducted an investigator-initiated, multicenter, single-group, phase 2 study of the anti-programmed death ligand 1 (PD-L1) agent atezolizumab in adult and pediatric patients with advanced ASPS. Atezolizumab was administered intravenously at a dose of 1200 mg (in patients ≥18 years of age) or 15 mg per kilogram of body weight with a 1200-mg cap (in patients <18 years of age) once every 21 days. Study end points included objective response, duration of response, and progression-free survival according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1, as well as pharmacodynamic biomarkers of multistep drug action. RESULTS: A total of 52 patients were evaluated. An objective response was observed in 19 of 52 patients (37%), with 1 complete response and 18 partial responses. The median time to response was 3.6 months (range, 2.1 to 19.1), the median duration of response was 24.7 months (range, 4.1 to 55.8), and the median progression-free survival was 20.8 months. Seven patients took a treatment break after 2 years of treatment, and their responses were maintained through the data-cutoff date. No treatment-related grade 4 or 5 adverse events were recorded. Responses were noted despite variable baseline expression of programmed death 1 and PD-L1. CONCLUSIONS: Atezolizumab was effective at inducing sustained responses in approximately one third of patients with advanced ASPS. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT03141684.).
Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1 , Sarcoma Alveolar de Partes Moles , Adolescente , Adulto , Criança , Humanos , Recém-Nascido , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Antígeno B7-H1/antagonistas & inibidores , Peso Corporal , Sarcoma Alveolar de Partes Moles/tratamento farmacológico , Administração IntravenosaRESUMO
RNA-binding proteins (RBPs) play an important role in biology, and characterizing dynamic RNA-protein interactions is essential for understanding RBP function. In this study, we developed targets of RBPs identified by editing induced through dimerization (TRIBE-ID), a facile strategy for quantifying state-specific RNA-protein interactions upon rapamycin-mediated chemically induced dimerization and RNA editing. We performed TRIBE-ID with G3BP1 and YBX1 to study RNA-protein interactions during normal conditions and upon oxidative stress-induced biomolecular condensate formation. We quantified editing kinetics to infer interaction persistence and show that stress granule formation strengthens pre-existing RNA-protein interactions and induces new RNA-protein binding events. Furthermore, we demonstrate that G3BP1 stabilizes its targets under normal and oxidative stress conditions independent of stress granule formation. Finally, we apply our method to characterize small-molecule modulators of G3BP1-RNA binding. Taken together, our work provides a general approach to profile dynamic RNA-protein interactions in cellular contexts with temporal control.
Assuntos
DNA Helicases , RNA Helicases , DNA Helicases/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , RNA Helicases/genética , Edição de RNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismoRESUMO
Cortical processing of auditory information can be affected by interspecies differences as well as brain states. Here we compare multifeature spectro-temporal receptive fields (STRFs) and associated input/output functions or nonlinearities (NLs) of neurons in primary auditory cortex (AC) of four mammalian species. Single-unit recordings were performed in awake animals (female squirrel monkeys, female, and male mice) and anesthetized animals (female squirrel monkeys, rats, and cats). Neuronal responses were modeled as consisting of two STRFs and their associated NLs. The NLs for the STRF with the highest information content show a broad distribution between linear and quadratic forms. In awake animals, we find a higher percentage of quadratic-like NLs as opposed to more linear NLs in anesthetized animals. Moderate sex differences of the shape of NLs were observed between male and female unanesthetized mice. This indicates that the core AC possesses a rich variety of potential computations, particularly in awake animals, suggesting that multiple computational algorithms are at play to enable the auditory system's robust recognition of auditory events.
Assuntos
Córtex Auditivo , Animais , Córtex Auditivo/fisiologia , Feminino , Masculino , Gatos , Camundongos , Ratos , Estimulação Acústica/métodos , Neurônios/fisiologia , Saimiri , Percepção Auditiva/fisiologia , Especificidade da Espécie , Modelos Neurológicos , Potenciais de Ação/fisiologia , Camundongos Endogâmicos C57BLRESUMO
Confining the activity of a designed protein to a specific microenvironment would have broad-ranging applications, such as enabling cell type-specific therapeutic action by enzymes while avoiding off-target effects. While many natural enzymes are synthesized as inactive zymogens that can be activated by proteolysis, it has been challenging to redesign any chosen enzyme to be similarly stimulus responsive. Here, we develop a massively parallel computational design, screening, and next-generation sequencing-based approach for proenzyme design. For a model system, we employ carboxypeptidase G2 (CPG2), a clinically approved enzyme that has applications in both the treatment of cancer and controlling drug toxicity. Detailed kinetic characterization of the most effectively designed variants shows that they are inhibited by â¼80% compared to the unmodified protein, and their activity is fully restored following incubation with site-specific proteases. Introducing disulfide bonds between the pro- and catalytic domains based on the design models increases the degree of inhibition to 98% but decreases the degree of restoration of activity by proteolysis. A selected disulfide-containing proenzyme exhibits significantly lower activity relative to the fully activated enzyme when evaluated in cell culture. Structural and thermodynamic characterization provides detailed insights into the prodomain binding and inhibition mechanisms. The described methodology is general and could enable the design of a variety of proproteins with precise spatial regulation.
Assuntos
Desenho Assistido por Computador , Desenho de Fármacos , Precursores Enzimáticos , Engenharia de Proteínas , gama-Glutamil Hidrolase , Domínio Catalítico , Desenho de Fármacos/métodos , Precursores Enzimáticos/química , Precursores Enzimáticos/farmacologia , Humanos , Células PC-3 , Engenharia de Proteínas/métodos , gama-Glutamil Hidrolase/química , gama-Glutamil Hidrolase/farmacologiaRESUMO
We report full-genome characterization of highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus from an outbreak among sea lions (August 2023) in Argentina and possible spillover to fur seals and terns. Mammalian adaptation mutations in virus isolated from marine mammals and a human in Chile were detected in mammalian and avian hosts.
Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Influenza Aviária/epidemiologia , Argentina/epidemiologia , Aves , Surtos de Doenças , Filogenia , MamíferosRESUMO
Herein, we report on surprisingly efficient photochemical vapor generation (PVG) of Ru, Re, and especially Ir, achieved from very dilute HCOOH media employing a thin-film flow-through photoreactor operated in flow injection mode. In the absence of added metal ion sensitizers, efficiencies near 20% for Ir and approximately 0.06% for Ru and Re occur in a narrow range of HCOOH concentrations (around 0.01 M), significantly higher than previously reported from conventionally optimized HCOOH concentrations (1-20 M). A substantial enhancement in efficiency, to around 9 and 1.5%, could be realized for Ru and Re, respectively, when 0.005 M HCOONa served as the PVG medium. The addition of metal ion sensitizers (particularly Cd2+ and Co2+) to 0.01 M HCOOH significantly enhanced PVG efficiencies to 17, 2.2, and 81% for Ru, Re, and Ir, respectively. Possible mechanistic aspects occurring in dilute HCOOH media are discussed, wherein this phenomenon is attributed to the action of 185 nm radiation available in the thin-film flow-through photoreactor. An extended study of PVG of Fe, Co, Ni, As, Se, Mo, Rh, Te, W, and Bi from both dilute HCOOH and CH3COOH was undertaken, and several elements for which a similar phenomenon appears were identified (i.e., Co, As, Se, Te, and Bi). Although use of dilute HCOOH media is attractive for practical analytical applications employing PVG, it is less tolerant toward dissolved gases and interferents in the liquid phase due to the likely lower concentrations of free radicals and aquated electrons required for analyte ion reduction and product synthesis.
RESUMO
PURPOSE: To explore the potential of 3T deuterium metabolic imaging (DMI) using a birdcage 2 H radiofrequency (RF) coil in both healthy volunteers and patients with central nervous system (CNS) lesions. METHODS: A modified gradient filter, home-built 2 H volume RF coil, and spherical k-space sampling were employed in a three-dimensional chemical shift imaging acquisition to obtain high-quality whole-brain metabolic images of 2 H-labeled water and glucose metabolic products. These images were acquired in a healthy volunteer and three subjects with CNS lesions of varying pathologies. Hardware and pulse sequence experiments were also conducted to improve the signal-to-noise ratio of DMI at 3T. RESULTS: The ability to quantify local glucose metabolism in correspondence to anatomical landmarks across patients with varying CNS lesions is demonstrated, and increased lactate is observed in one patient with the most active disease. CONCLUSION: DMI offers the potential to examine metabolic activity in human subjects with CNS lesions with DMI at 3T, promising for the potential of the future clinical translation of this metabolic imaging technique.
Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Humanos , Deutério , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Razão Sinal-Ruído , GlucoseRESUMO
The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.
Assuntos
Adenosina , Nucleosídeos , Humanos , Adenosina/química , Adenosina/metabolismo , Proteômica , Diazometano , Sondas de Oligonucleotídeos , RNA/química , Homólogo AlkB 1 da Histona H2a DioxigenaseRESUMO
The goal of this study was to investigate the origin of brain lactate (Lac) signal in the healthy anesthetized rat after injection of hyperpolarized (HP) [1-13 C]pyruvate (Pyr). Dynamic two-dimensional spiral chemical shift imaging with flow-sensitizing gradients revealed reduction in both vascular and brain Pyr, while no significant dependence on the level of flow suppression was detected for Lac. These results support the hypothesis that the HP metabolites predominantly reside in different compartments in the brain (i.e., Pyr in the blood and Lac in the parenchyma). Data from high-resolution metabolic imaging of [1-13 C]Pyr further demonstrated that Lac detected in the brain was not from contributions of vascular signal attributable to partial volume effects. Additionally, metabolite distributions and kinetics measured with dynamic imaging after injection of HP [1-13 C]Lac were similar to Pyr data when Pyr was used as the substrate. These data do not support the hypothesis that Lac observed in the brain after Pyr injection was generated in other organs and then transported across the blood-brain barrier (BBB). Together, the presented results provide further evidence that even in healthy anesthetized rats, the transport of HP Pyr across the BBB is sufficiently fast to permit detection of its metabolic conversion to Lac within the brain.
Assuntos
Ácido Láctico , Ácido Pirúvico , Ratos , Animais , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Barreira Hematoencefálica/diagnóstico por imagem , Isótopos de Carbono/metabolismoRESUMO
A liquid sampling-atmospheric pressure glow discharge (LS-APGD) ionization source operating at a nominal power of 30 W and solution flow rate of 30 µL min-1 and supported in a He sheath gas flow rate of 500 mL min-1 was interfaced to an Orbitrap mass spectrometer and assessed for use in rapid identification of inorganic and organic arsenic species, including As(III), As(V), monomethylarsonic acid, dimethylarsinic acid, and arsenobetaine in a 2% (v/v) nitric acid medium. Mass spectral acquisition in low-resolution mode, using only the ion trap analyzer, provided detection of protonated molecular ions for AsBet (m/z 179), DMA (m/z 139), MMA (m/z 141), and As(V) (m/z 143). As(III) is oxidized to As(V), likely due to in-source processes. Typical fragmentation of these compounds resulted in the loss of either water or methyl groups, as appropriate, i.e., introducing DMA also generated ions corresponding to MMA and As(V) as dissociation products. Structure assignments were also confirmed by high-resolution Orbitrap measurements. Spectral fingerprint assignments were based on the introduction of solutions containing 5 µg mL-1 of each arsenic compound.
RESUMO
During investigation of common linnet (Linaria cannabina) blood using the buffy coat method one bird with microfilariae in the blood was found. The morphometric description of adult worms corresponded to the Chandlerella sinensis. This species was found for the first time in common linnets. DNA sequences of cox1 and 28S gene fragments of adult worm recovered during necropsy was identical to that from the microfilariae in the bird blood. Phylogenetic analysis of the cox1 gene fragment clustered this parasite with Chandlerella quiscali. Histological examination revealed the presence of microfilariae in the lumen of small capillaries and other blood vessels in different organs, but no inflammations were notice. The greatest number of microfilariae was in the lungs. Even if there was no inflammation, but vessels associated with the lungs were markedly distended with blood, parabronchial walls were thickened and, in some cases, almost completely obstructing the lumen. The large number of microfilariae in lungs indicates possible disturbance of gas exchange in the lungs adversely affected the ability of the bird to exercise and made breathing difficult at rest. The investigation of circadian rhythm of the microfilariae showed that C. sinensis microfilariae in blood of common linnet were more numerous at night and morning and less numerous at midday. The survival rate of mosquitoes infected with C. sinensis microfilariae was significantly lower than that of uninfected mosquitoes.
Assuntos
Doenças das Aves , Ritmo Circadiano , Microfilárias , Filogenia , Animais , Microfilárias/fisiologia , Doenças das Aves/parasitologia , Filariose/parasitologia , Filariose/veterinária , Pulmão/parasitologia , Interações Hospedeiro-Parasita , Filarioidea/genética , Filarioidea/fisiologia , Feminino , MasculinoRESUMO
Objective: To describe the clinical appearance, histopathology, and treatment of equine intraocular melanocytic neoplasia in adult horses. Animals and procedure: A retrospective review of medical records was conducted. Data recorded included signalment, ocular examination findings, physical examination findings, therapeutic interventions, and case outcomes. Histopathologic characteristics of enucleated globes were evaluated. A Student's t-test was used to evaluate differences in the interval from diagnosis to last known outcome between horses receiving therapeutic interventions and horses undergoing monitoring alone. Results: Of the 55 horses included, Arabian was the most common breed (15/55, 27%). Gray was the most common coat color (85%). Physical examination was completed for 75% of horses at time of diagnosis, and of those, 67% had cutaneous melanoma. The interval from diagnosis to last known outcome was not different (P = 0.312) between horses that underwent monitoring alone (median: 2.0 y) and those that received treatment (mean: 2.25 y). Conclusion: Equine intraocular melanocytic neoplasms are highly associated with cutaneous melanoma and gray coat color, and they are more prevalent than previously published reports suggest. Clinical relevance: A complete ophthalmic examination is indicated for all horses with cutaneous melanoma. Additional research into the timing and rationale for treatment of intraocular melanocytic neoplasia is necessary.
Néoplasie mélanocytaire intraoculaire équine. Objectif: Décrire l'aspect clinique, l'histopathologie et le traitement de la néoplasie mélanocytaire intraoculaire équine chez le cheval adulte. Animaux et procédure: Une étude rétrospective des dossiers médicaux a été réalisée. Les données enregistrées comprenaient le signalement, les résultats de l'examen oculaire, les résultats de l'examen physique, les interventions thérapeutiques et les résultats des cas. Les caractéristiques histopathologiques des globes énucléés ont été évaluées. Un test t de Student a été utilisé pour évaluer les différences dans l'intervalle entre le diagnostic et le dernier résultat connu entre les chevaux recevant des interventions thérapeutiques et les chevaux soumis à une surveillance seule. Résultats: Sur les 55 chevaux inclus, l'Arabe était la race la plus répandue (15/55, 27 %). Le gris était la couleur de robe la plus courante (85 %). L'examen physique a été réalisé pour 75 % des chevaux au moment du diagnostic, et parmi eux, 67 % présentaient un mélanome cutané. L'intervalle entre le diagnostic et le dernier résultat connu n'était pas différent (P = 0,312) entre les chevaux ayant subi une surveillance seule (médiane : 2,0 ans) et ceux ayant reçu un traitement (moyenne : 2,25 ans). Conclusion: Les néoplasmes mélanocytaires intraoculaires équins sont fortement associés au mélanome cutané et à la couleur du pelage gris, et ils sont plus fréquents que ne le suggèrent les rapports publiés précédemment. Pertinence clinique: Un examen ophtalmologique complet est indiqué pour tous les chevaux atteints de mélanome cutané. Des recherches supplémentaires sur la planification et la justification du traitement de la néoplasie mélanocytaire intraoculaire sont nécessaires.(Traduit par Dr Serge Messier).
Assuntos
Neoplasias Oculares , Doenças dos Cavalos , Melanoma , Cavalos , Animais , Doenças dos Cavalos/patologia , Melanoma/veterinária , Melanoma/patologia , Estudos Retrospectivos , Masculino , Feminino , Neoplasias Oculares/veterinária , Neoplasias Oculares/patologia , Neoplasias Oculares/diagnóstico , Neoplasias Cutâneas/veterinária , Neoplasias Cutâneas/patologiaRESUMO
Cellular nucleic acids are subject to assault by endogenous and exogenous agents that can perturb the flow of genetic information. Oxidative stress leads to the accumulation of 8-oxoguanine (8OG) in DNA and RNA. 8OG lesions on mRNA negatively impact translation, but their effect on global RNA-protein interactions is largely unknown. Here, we apply an RNA chemical proteomics approach to investigate the effect of 8OG on RNA-protein binding. We find proteins that bind preferentially to 8OG-modified RNA, including IGF2BP1-3 and hnRNPD, and proteins that are repelled by 8OG such as RBM4. We characterize these interactions using biochemical and biophysical assays to quantify the effect of 8OG on binding and show that a single 8OG abolishes the binding of RBM4 to its preferred CGG-containing substrate. Taken together, our work establishes the molecular consequences of 8OG on cellular RNA-protein binding and provides a framework for interrogating the role of RNA oxidation in biological systems.
Assuntos
Reparo do DNA , Estresse Oxidativo , Dano ao DNA , RNARESUMO
Stress granules (SGs) and processing-bodies (PBs, P-bodies) are ubiquitous and widely studied ribonucleoprotein (RNP) granules involved in cellular stress response, viral infection, and the tumor microenvironment. While proteomic and transcriptomic investigations of SGs and PBs have provided insights into molecular composition, chemical tools to probe and modulate RNP granules remain lacking. Herein, we combine an immunofluorescence (IF)-based phenotypic screen with chemoproteomics to identify sulfonyl-triazoles (SuTEx) capable of preventing or inducing SG and PB formation through liganding of tyrosine (Tyr) and lysine (Lys) sites in stressed cells. Liganded sites were enriched for RNA-binding and protein-protein interaction (PPI) domains, including several sites found in RNP granule-forming proteins. Among these, we functionally validate G3BP1 Y40, located in the NTF2 dimerization domain, as a ligandable site that can disrupt arsenite-induced SG formation in cells. In summary, we present a chemical strategy for the systematic discovery of condensate-modulating covalent small molecules.
Assuntos
Grânulos Citoplasmáticos , DNA Helicases , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteômica , RNA Helicases/químicaRESUMO
Herein, we describe the highly efficient photochemical vapor generation (PVG) of a volatile species of Ir (presumably iridium tetracarbonyl hydride) for subsequent detection by inductively coupled plasma mass spectrometry (ICPMS). A thin-film flow-through photoreactor, operated in flow injection mode, provided high efficiency following optimization of identified key PVG parameters, notably, irradiation time, pH of the reaction medium, and the presence of metal sensitizers. For routine use and analytical application, PVG conditions comprising 4 M formic acid as the reaction medium, the presence of 10 mg L-1 Co2+ and 25 mg L-1 Cd2+ as added sensitizers, and an irradiation time of 29 s were chosen. An almost 90% overall PVG efficiency for both Ir3+ and Ir4+ oxidation states was accompanied by excellent repeatability of 1.0% (n = 15) of the peak area response from a 50 ng L-1 Ir standard. Limits of detection ranged from 3 to 6 pg L-1 (1.5-3 fg absolute), dependent on use of the ICPMS reaction/collision cell. Interferences from several transition metals and metalloids as well as inorganic acids and their anions were investigated, and outstanding tolerance toward chloride was found. Accuracy of the developed methodology was verified by analysis of NIST SRM 2556 (Used Auto Catalyst) following peroxide fusion for sample preparation. Practical application was further demonstrated by the direct analysis of spring water, river water, lake water, and two seawater samples with around 100% spike recovery and no sample preparation except the addition of formic acid and the sensitizers.