Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Sci ; 131(21)2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30301778

RESUMO

Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.


Assuntos
Acrossomo/metabolismo , Citoesqueleto de Actina/metabolismo , Espermatozoides/metabolismo , Animais , Exocitose , Masculino , Camundongos , Imagem Molecular
2.
Biol Reprod ; 94(3): 63, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26819478

RESUMO

During capacitation, sperm acquire the ability to undergo the acrosome reaction (AR), an essential step in fertilization. Progesterone produced by cumulus cells has been associated with various physiological processes in sperm, including stimulation of AR. An increase in intracellular Ca(2+) ([Ca(2+)]i) is necessary for AR to occur. In this study, we investigated the spatiotemporal correlation between the changes in [Ca(2+)]i and AR in single mouse spermatozoa in response to progesterone. We found that progesterone stimulates an [Ca(2+)]i increase in five different patterns: gradual increase, oscillatory, late transitory, immediate transitory, and sustained. We also observed that the [Ca(2+)]i increase promoted by progesterone starts at either the flagellum or the head. We validated the use of FM4-64 as an indicator for the occurrence of the AR by simultaneously detecting its fluorescence increase and the loss of EGFP in transgenic EGFPAcr sperm. For the first time, we have simultaneously visualized the rise in [Ca(2+)]i and the process of exocytosis in response to progesterone and found that only a specific transitory increase in [Ca(2+)]i originating in the sperm head promotes the initiation of AR.


Assuntos
Reação Acrossômica/efeitos dos fármacos , Cálcio/metabolismo , Progesterona/farmacologia , Espermatozoides/efeitos dos fármacos , Animais , Masculino , Camundongos , Camundongos Transgênicos , Compostos de Piridínio , Compostos de Amônio Quaternário , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA