Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(6)2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38544039

RESUMO

This study centers on creating a real-time algorithm to estimate brain-to-brain synchronization during social interactions, specifically in collaborative and competitive scenarios. This type of algorithm can provide useful information in the educational context, for instance, during teacher-student or student-student interactions. Positioned within the context of neuroeducation and hyperscanning, this research addresses the need for biomarkers as metrics for feedback, a missing element in current teaching methods. Implementing the bispectrum technique with multiprocessing functions in Python, the algorithm effectively processes electroencephalography signals and estimates brain-to-brain synchronization between pairs of subjects during (competitive and collaborative) activities that imply specific cognitive processes. Noteworthy differences, such as higher bispectrum values in collaborative tasks compared to competitive ones, emerge with reliability, showing a total of 33.75% of significant results validated through a statistical test. While acknowledging progress, this study identifies areas of opportunity, including embedded operations, wider testing, and improved result visualization. Beyond academia, the algorithm's utility extends to classrooms, industries, and any setting involving human interactions. Moreover, the presented algorithm is shared openly, to facilitate implementations by other researchers, and is easily adjustable to other electroencephalography devices. This research not only bridges a technological gap but also contributes insights into the importance of interactions in educational contexts.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Reprodutibilidade dos Testes , Eletroencefalografia/métodos , Algoritmos , Estudantes
2.
Sensors (Basel) ; 24(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38676053

RESUMO

Wearable Biosensor Technology (WBT) has emerged as a transformative tool in the educational system over the past decade. This systematic review encompasses a comprehensive analysis of WBT utilization in educational settings over a 10-year span (2012-2022), highlighting the evolution of this field to address challenges in education by integrating technology to solve specific educational challenges, such as enhancing student engagement, monitoring stress and cognitive load, improving learning experiences, and providing real-time feedback for both students and educators. By exploring these aspects, this review sheds light on the potential implications of WBT on the future of learning. A rigorous and systematic search of major academic databases, including Google Scholar and Scopus, was conducted in accordance with the PRISMA guidelines. Relevant studies were selected based on predefined inclusion and exclusion criteria. The articles selected were assessed for methodological quality and bias using established tools. The process of data extraction and synthesis followed a structured framework. Key findings include the shift from theoretical exploration to practical implementation, with EEG being the predominant measurement, aiming to explore mental states, physiological constructs, and teaching effectiveness. Wearable biosensors are significantly impacting the educational field, serving as an important resource for educators and a tool for students. Their application has the potential to transform and optimize academic practices through sensors that capture biometric data, enabling the implementation of metrics and models to understand the development and performance of students and professors in an academic environment, as well as to gain insights into the learning process.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Técnicas Biossensoriais/instrumentação , Humanos , Eletroencefalografia/métodos , Eletroencefalografia/instrumentação , Educação , Estudantes , Aprendizagem
3.
Philos Ethics Humanit Med ; 18(1): 17, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946225

RESUMO

BACKGROUND: Neuroscientific approaches have historically triggered changes in the conception of creativity and artistic experience, which can be revealed by noting the intersection of these fields of study in terms of variables such as global trends, methodologies, objects of study, or application of new technologies; however, these neuroscientific approaches are still often considered as disciplines detached from the arts and humanities. In this light, the question arises as to what evidence the history of neurotechnologies provides at the intersection of creativity and aesthetic experience. METHODS: We conducted a century-long bibliometric analysis of key parameters in multidisciplinary studies published in the Scopus database. Screening techniques based on the PRISMA method and advanced data analysis techniques were applied to 3612 documents metadata from the years 1922 to 2022. We made graphical representations of the results applying algorithmic and clusterization processes to keywords and authors relationships. RESULTS: From the analyses, we found a) a shift from a personality-focus quantitative analysis to a field-focus qualitative approach, considering topics such as art, perception, aesthetics and beauty; b) The locus of interest in fMRI-supported neuroanatomy has been shifting toward EEG technologies and models based on machine learning and deep learning in recent years; c) four main clusters were identified in the study approaches: humanistic, creative, neuroaesthetic and medical; d) the neuroaesthetics cluster is the most central and relevant, mediating between creativity and neuroscience; e) neuroaesthetics and neuroethics are two of the neologism that better characterizes the challenges that this convergence of studies will have in the next years. CONCLUSIONS: Through a longitudinal analysis, we evidenced the great influence that neuroscience is having on the thematic direction of the arts and humanities. The perspective presented shows how this field is being consolidated and helps to define it as a new opportunity of great potential for future researchers.


Assuntos
Arte , Neurociências , Ciências Humanas , Cognição , Criatividade
4.
F1000Res ; 11: 989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37809054

RESUMO

Understanding and predicting others' actions in ecological settings is an important research goal in social neuroscience. Here, we deployed a mobile brain-body imaging (MoBI) methodology to analyze inter-brain communication between professional musicians during a live jazz performance. Specifically, bispectral analysis was conducted to assess the synchronization of scalp electroencephalographic (EEG) signals from three expert musicians during a three-part 45 minute jazz performance, during which a new musician joined every five minutes. The bispectrum was estimated for all musician dyads, electrode combinations, and five frequency bands. The results showed higher bispectrum in the beta and gamma frequency bands (13-50 Hz) when more musicians performed together, and when they played a musical phrase synchronously. Positive bispectrum amplitude changes were found approximately three seconds prior to the identified synchronized performance events suggesting preparatory cortical activity predictive of concerted behavioral action. Moreover, a higher amount of synchronized EEG activity, across electrode regions, was observed as more musicians performed, with inter-brain synchronization between the temporal, parietal, and occipital regions the most frequent. Increased synchrony between the musicians' brain activity reflects shared multi-sensory processing and movement intention in a musical improvisation task.


Assuntos
Música , Encéfalo , Mapeamento Encefálico/métodos , Eletroencefalografia , Comunicação
5.
Artigo em Inglês | MEDLINE | ID: mdl-34831645

RESUMO

Non-pathological mental fatigue is a recurring, but undesirable condition among people in the fields of office work, industry, and education. This type of mental fatigue can often lead to negative outcomes, such as performance reduction and cognitive impairment in education; loss of focus and burnout syndrome in office work; and accidents leading to injuries or death in the transportation and manufacturing industries. Reliable mental fatigue assessment tools are promising in the improvement of performance, mental health and safety of students and workers, and at the same time, in the reduction of risks, accidents and the associated economic loss (e.g., medical fees and equipment reparations). The analysis of biometric (brain, cardiac, skin conductance) signals has proven to be effective in discerning different stages of mental fatigue; however, many of the reported studies in the literature involve the use of long fatigue-inducing tests and subject-specific models in their methodologies. Recent trends in the modeling of mental fatigue suggest the usage of non subject-specific (general) classifiers and a time reduction of calibration procedures and experimental setups. In this study, the evaluation of a fast and short-calibration mental fatigue assessment tool based on biometric signals and inter-subject modeling, using multiple linear regression, is presented. The proposed tool does not require fatigue-inducing tests, which allows fast setup and implementation. Electroencephalography, photopletismography, electrodermal activity, and skin temperature from 17 subjects were recorded, using an OpenBCI helmet and an Empatica E4 wristband. Correlations to self-reported mental fatigue levels (using the fatigue assessment scale) were calculated to find the best mental fatigue predictors. Three-class mental fatigue models were evaluated, and the best model obtained an accuracy of 88% using three features, ß/θ (C3), and the α/θ (O2 and C3) ratios, from one minute of electroencephalography measurements. The results from this pilot study show the feasibility and potential of short-calibration procedures and inter-subject classifiers in mental fatigue modeling, and will contribute to the use of wearable devices for the development of tools oriented to the well-being of workers and students, and also in daily living activities.


Assuntos
Dispositivos Eletrônicos Vestíveis , Local de Trabalho , Biometria , Humanos , Fadiga Mental/diagnóstico , Projetos Piloto
6.
Brain Sci ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073242

RESUMO

This study presents a neuroengineering-based machine learning tool developed to predict students' performance under different learning modalities. Neuroengineering tools are used to predict the learning performance obtained through two different modalities: text and video. Electroencephalographic signals were recorded in the two groups during learning tasks, and performance was evaluated with tests. The results show the video group obtained a better performance than the text group. A correlation analysis was implemented to find the most relevant features to predict students' performance, and to design the machine learning tool. This analysis showed a negative correlation between students' performance and the (theta/alpha) ratio, and delta power, which are indicative of mental fatigue and drowsiness, respectively. These results indicate that users in a non-fatigued and well-rested state performed better during learning tasks. The designed tool obtained 85% precision at predicting learning performance, as well as correctly identifying the video group as the most efficient modality.

7.
Cogn Neurodyn ; 10(2): 175-83, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27066154

RESUMO

We propose to assess the process of learning a task using electroencephalographic (EEG) measurements. In particular, we quantify changes in brain activity associated to the progression of the learning experience through the functional analysis-of-variances (FANOVA) estimators of the EEG power spectral density (PSD). Such functional estimators provide a sense of the effect of training in the EEG dynamics. For that purpose, we implemented an experiment to monitor the process of learning to type using the Colemak keyboard layout during a twelve-lessons training. Hence, our aim is to identify statistically significant changes in PSD of various EEG rhythms at different stages and difficulty levels of the learning process. Those changes are taken into account only when a probabilistic measure of the cognitive state ensures the high engagement of the volunteer to the training. Based on this, a series of statistical tests are performed in order to determine the personalized frequencies and sensors at which changes in PSD occur, then the FANOVA estimates are computed and analyzed. Our experimental results showed a significant decrease in the power of [Formula: see text] and [Formula: see text] rhythms for ten volunteers during the learning process, and such decrease happens regardless of the difficulty of the lesson. These results are in agreement with previous reports of changes in PSD being associated to feature binding and memory encoding.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA