Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Biol Chem ; 299(10): 105198, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37660917

RESUMO

The bacterial cell envelope is the structure with which the bacterium engages with, and is protected from, its environment. Within this envelop is a conserved peptidoglycan polymer which confers shape and strength to the cell envelop. The enzymatic processes that build, remodel, and recycle the chemical components of this cross-linked polymer are preeminent targets of antibiotics and exploratory targets for emerging antibiotic structures. We report a comprehensive kinetic and structural analysis for one such enzyme, the Pseudomonas aeruginosa anhydro-N-acetylmuramic acid (anhNAM) kinase (AnmK). AnmK is an enzyme in the peptidoglycan-recycling pathway of this pathogen. It catalyzes the pairing of hydrolytic ring opening of anhNAM with concomitant ATP-dependent phosphoryl transfer. AnmK follows a random-sequential kinetic mechanism with respect to its anhNAM and ATP substrates. Crystallographic analyses of four distinct structures (apo AnmK, AnmK:AMPPNP, AnmK:AMPPNP:anhNAM, and AnmK:ATP:anhNAM) demonstrate that both substrates enter the active site independently in an ungated conformation of the substrate subsites, with protein loops acting as gates for anhNAM binding. Catalysis occurs within a closed conformational state for the enzyme. We observe this state crystallographically using ATP-mimetic molecules. A remarkable X-ray structure for dimeric AnmK sheds light on the precatalytic and postcatalytic ternary complexes. Computational simulations in conjunction with the high-resolution X-ray structures reveal the full catalytic cycle. We further report that a P. aeruginosa strain with disrupted anmK gene is more susceptible to the ß-lactam imipenem compared to the WT strain. These observations position AnmK for understanding the nexus among peptidoglycan recycling, susceptibility to antibiotics, and bacterial virulence.


Assuntos
Proteínas de Bactérias , Modelos Moleculares , Fosfotransferases , Pseudomonas aeruginosa , Antibacterianos , Catálise , Cristalografia por Raios X , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases/genética , Fosfotransferases/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrutura Terciária de Proteína , Ativação Enzimática/genética , Farmacorresistência Bacteriana/genética
2.
Mol Divers ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833125

RESUMO

Breast cancer (BC) poses a significant global health threat, necessitating innovative therapeutic approaches. The ribosomal s6 kinase 2 (RSK2) has emerged as a promising target due to its roles in cell proliferation and survival. This study proposes a drug-drug conjugate prodrug comprising Methotrexate (hydrophobic) and Capecitabine (hydrophilic) for BC treatment. In silico approaches, including Molecular Docking, Molecular Dynamics Simulations, MM-PBSA, ADME, and DFT calculations were employed to evaluate the prodrug's potential. The designed MET-CAP ligand exhibits a robust docking score (-8.980 kcal/mol), superior binding affinity (-53.16 kcal/mol), and stable dynamic behavior (0.62 nm) compared to native ligands. The DFT results reveal intramolecular charge transfer in MET-CAP (HLG = 0.09 eV), indicating its potential as a BC inhibitor. ADME analysis suggests satisfactory pharmaceutically relevant properties. The results indicate that the conjugated MET-CAP ligand exhibits favorable binding characteristics, stability, and pharmaceutically relevant properties, making it a potential RSK2 inhibitor for BC therapy. The multifaceted approach provides insights into binding interactions, stability, and pharmacokinetic properties, laying the foundation for further experimental validation and potential clinical development.

3.
J Cell Biochem ; 122(12): 1832-1847, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34448250

RESUMO

The majority of bacteria and archaea contains Toxin-Antitoxin system (TA) that codes for the stable Toxin and unstable Antitoxin components forming a complex. The Antitoxin inhibits the catalytic activities of the Toxin. In general, the Antitoxin will be degraded by the proteases leading to the Toxin activation that subsequently targets essential cellular processes, including transcription, translation, replication, cell division, and cell wall biosynthesis. The Zeta Toxin-Epsilon Antitoxin system in ESKAPE pathogen stabilizes the resistance plasmid and promotes pathogenicity. The known TA system in Acinetobacter baumannii are known to be involved in the replication and translation, however, the mechanism of Zeta Toxin-Epsilon Antitoxin in cell wall biosynthesis remains unknown. In the present study, molecular docking and molecular dynamic (MD) simulations were employed to demonstrate whether Zeta Toxin can impair cell wall synthesis in A. baumannii. Further, the degradation mechanism of Antitoxin in the presence and absence of adenosine triphosphate (ATP) molecules are explained through MD simulation. The result reveals that the cleavage of Antitoxin could be possible with the presence of ATP by displaying its response from 20 ns, whereas the Zeta Toxin/Epsilon was unstable after 90 ns. The obtained results demonstrate that Zeta Toxin is "temporarily favorable" for ATP to undergo phosphorylation at UNAG kinase through the substrate tunneling process. The study further evidenced that phosphorylated UNAG prevents the binding of MurA, the enzyme that catalyzes the initial step of bacterial peptidoglycan biosynthesis. Therefore, the present study explores the binding mechanism of Zeta Toxin/Epsilon Antitoxin, which could be beneficial for preventing cell wall biosynthesis as well as for unveiling the alternative treatment options to antibiotics.


Assuntos
Acinetobacter baumannii/química , Parede Celular/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Sistemas Toxina-Antitoxina , Acinetobacter baumannii/metabolismo , Parede Celular/metabolismo
4.
Microb Pathog ; 114: 180-192, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29196174

RESUMO

Extended spectrum ß-lactamases (ESBLs) are a group of enzymes that can hydrolyze a variety of ß-lactams including fourth generation cephalosporins and compromise the efficacy of all ß-lactams, except cephamycins and carbapenems. In the worldwide, the ESBL group of enzymes are found widely and causes a severe infection on human health which leads to various diseases. This review primarily focusses on analyzing the prevalence and drug resistance patterns in the African continent. From the earlier reported data shown only the minimal amount of surveillance information's has been summarized with respect to antimicrobial resistance on ESBLs producing Enterobacteriaceae both in hospital and community settings. To bring the present scenario in limelight, the present study explores the prevalence of ESBL-producing Enterobacteriaceae in various countries in Africa and specifically, to identify most common ESBL genes in hospital and community. The observation was initiated with the exhaustive literature search using PubMed and other databases to broaden the study from the earlier investigations in the African countries concerned about the prevalence rate of ESBL producing Enterobacteriaceae. Further, this study was extended to review various hypothesis of the hydrolytic mechanism, which was detailed by several authors performed earlier through computational approaches. Interestingly, the ESBLs class A and D were found to be common classes in Africa, with the gene CTX-M-15 being most prevalent. Notably, the present review highlights the prevalence on individual countries in Africa and it is extremely significant to prevent the dissemination of ESBL-producing Enterobacteriaceaea. Hence, this review on surveillance will be the benchmark to enhance the research on antimicrobial resistance patterns for all classes and genes. Furthermore, explored in-sights in this paper will be helpful for the further investigations to develop quicker, cost effective, and reliable diagnostic strategies and new effective therapies.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/enzimologia , beta-Lactamases/metabolismo , África , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Humanos , beta-Lactamases/genética , beta-Lactamas/farmacologia
5.
J Biomol Struct Dyn ; : 1-15, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592189

RESUMO

Globally the SARS-CoV-2 viral infection demands for the new drugs, the TMPRSS2 target plays a vital role in facilitating the virus entry. The aim of the present study is to identify the potential peptide substrate from the Anti-viral database against TMPRSS2 of SARS-CoV-2. The compound screening and variation analysis were performed using molecular docking analysis and online tools such as PROVEAN and SNAP2 server, respectively. The re-docked crystal structure peptide substrate exhibits -128.151 kcal/mol whereas the RRKK peptide substrate shows -134.158 kcal/mol. Further, the selected compounds were proceeded with Molecular Dynamics Simulation, it explores the stability of the complex by revealing the hotspot residues (His296 and Ser441) were active for nucleophilic attack against TMPRSS2. The average Binding Free Energy values computed through MM/GBSA for RRKK, Camostat, and Crystal Structure were shown -69.9278 kcal/mol, -64.5983 kcal/mol, and -63.9755 kcal/mol, respectively against TMPRSS2. The 'rate of acylation' emerges as an indicator for RRKK's efficacy, it maintains the distance of 3.2 Å with Ser441 resembles, whilst its -NH backbone stabilizes at 2.5 Å 'Michaelis Complex' which leads to prevent the entry of SARS-CoV-2 to human cells. The sequence variation analysis explores that the V160 and G6 substitutions are essential to emphasize the uncover possibilities for the ongoing drug discovery research. Therefore, the identified peptide substrate found to be potent against SARS-CoV-2 and these results will be valuable for ongoing drug discovery research.Communicated by Ramaswamy H. Sarma.

6.
Sci Rep ; 14(1): 6696, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509156

RESUMO

Direct exposure to the fungal species Alternaria alternata is a major risk factor for the development of asthma, allergic rhinitis, and inflammation. As of November 23rd 2020, the NCBI protein database showed 11,227 proteins from A. alternata genome as hypothetical proteins (HPs). Allergens are the main causative of several life-threatening diseases, especially in fungal infections. Therefore, the main aim of the study is to identify the potentially allergenic inducible proteins from the HPs in A. alternata and their associated functional assignment for the complete understanding of the complex biological systems at the molecular level. AlgPred and Structural Database of Allergenic Proteins (SDAP) were used for the prediction of potential allergens from the HPs of A. alternata. While analyzing the proteome data, 29 potential allergens were predicted by AlgPred and further screening in SDAP confirmed the allergic response of 10 proteins. Extensive bioinformatics tools including protein family classification, sequence-function relationship, protein motif discovery, pathway interactions, and intrinsic features from the amino acid sequence were used to successfully predict the probable functions of the 10 HPs. The functions of the HPs are characterized as chitin-binding, ribosomal protein P1, thaumatin, glycosyl hydrolase, and NOB1 proteins. The subcellular localization and signal peptide prediction of these 10 proteins has further provided additional information on localization and function. The allergens prediction and functional annotation of the 10 proteins may facilitate a better understanding of the allergenic mechanism of A. alternata in asthma and other diseases. The functional domain level insights and predicted structural features of the allergenic proteins help to understand the pathogenesis and host immune tolerance. The outcomes of the study would aid in the development of specific drugs to combat A. alternata infections.


Assuntos
Asma , Hipersensibilidade , Alérgenos/genética , Alternaria/genética
7.
Int J Biol Macromol ; 267(Pt 1): 131420, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583835

RESUMO

Natural product bulgecin A potentiates the activity of ß-lactam antibiotics by inhibition of three lytic transglycosylases in Pseudomonas aeruginosa, of which MltD is one. MltD exhibits both endolytic and exolytic reactions in the turnover of the cell-wall peptidoglycan and tolerates the presence or absence of stem peptides in its substrates. The present study reveals structural features of the multimodular MltD, presenting a catalytic module and four cell-wall-binding LysM modules that account for these attributes. Three X-ray structures are reported herein for MltD that disclose one unpredicted LysM module tightly attached to the catalytic domain, whereas the other LysM modules are mobile, and connected to the catalytic domain through long flexible linkers. The formation of crystals depended on the presence of bulgecin A. The expansive active-site cleft is highlighted by the insertion of a helical region, a hallmark of the family 1D of lytic transglycosylases, which was mapped out in a ternary complex of MltD:bulgecinA:chitotetraose, revealing at the minimum the presence of eight subsites (from -4 to +4, with the seat of reaction at subsites -1 and + 1) for binding of sugars of the substrate for the endolytic reaction. The mechanism of the exolytic reaction is revealed in one of the structures, showing how the substrate's terminal anhydro-NAM moiety could be sequestered at subsite +2. Our results provide the structural insight for both the endolytic and exolytic activities of MltD during cell-wall-turnover events.


Assuntos
Domínio Catalítico , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Modelos Moleculares , Glicosiltransferases/química , Glicosiltransferases/metabolismo , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Cristalografia por Raios X , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Parede Celular , Especificidade por Substrato
8.
Front Chem ; 11: 1090630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36909706

RESUMO

Background: Carbapenem-resistant Acinetobacter baumannii is an opportunistic pathogen responsible for nosocomial infections and is one of the biggest global threats according to the World Health Organization (WHO), particularly causing substantial morbidity and mortality. Objectives: This study aimed at using computational approaches to screen meropenem and its analogs against OXA-23-positive Acinetobacter baumannii, analyzing the correlations between kinetic and phenotypic characteristics. Methods: A total of 5,450 compounds were screened using virtual screening workflow (HTVS, Glide-SP, and Glide-XP) to identify the best compounds based on their binding energy and interactions against OXA-23 and OXA-27 as they had phenotypic data available. Molecular dynamics simulation and density functional theory (DFT) studies were performed from the outcome of molecular docking analysis. Results: During simulations, meropenem and its analogs exhibited high-level stable interactions with Ser79, Ser126, Thr217, Trp219, and Arg259 of OXA-23. Meropenem displayed a CovDock energy of about -3.5 and -1.9 kcal mol-1 against OXA-23 and OXA-27, respectively. Among the 5,450 compounds, Pubchem_10645796, Pubchem_25224737, and ChEMBL_14 recorded CovDock energy between -6.0 and -9.0 kcal mol-1. Moreover, the infra-red (IR) spectrophotometric analysis revealed C=O and C-N atoms showing bands at 1,800 and 1,125 cm-1, respectively. These observed data are in congruence with the experimental observations. Conclusion: The identified compounds showed good agreement with the spectrophotometric analysis using DFT methods. In the earlier studies, meropenem's MIC value was 32 µg mL-1 in OXA-23-positive isolate A2265 compared to the MIC of 1 µg mL-1 in Δbla OXA-23 A2265. Comparing the CovDock energy and hydrogen-bonding interactions, the predicted results are in good agreement with the experimental data reported earlier. Our results highlight the importance of OXA-23 molecular docking studies and their compliance with the phenotypic results. It will help further in developing newer antibiotics for treating severe infections associated with carbapenem-resistant A. baumannii.

9.
J Biomol Struct Dyn ; 41(23): 13950-13962, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37098715

RESUMO

Breast cancer (BC) is the most serious and second leading cause of death in women worldwide. When breast cancer is diagnosed and treated early, the chance of long-term survival is up to 90%. On the other hand, 90% of BC patient deaths are due to metastasis and a lack of effective early diagnosis. The existing conventional chemotherapy provides negative feedback due to transportation barriers towards the action sites, multidrug resistance, poor bio-availability, non-specific delivery and systemic side effects on the healthy tissue. Syk protein Kinase has been reported in BC, as a tumor modulator, providing a pro-survival signal and also by restricting epithelial-mesenchymal transition, enhancing cell-cell interactions and inhibiting migration. In the present study, we explored the possibility of targeting BC by attenuating Syk protein Kinase. Hence, we have conjugated the hydrophobic Bendamustine (BEN) and hydrophilic Azacitidine (AZA) anticancer drugs to evaluate their efficacy against BC. The native drugs (BEN and AZA) and designed drug-drug conjugate (BEN-AZA) were docked with Syk protein. Then, the docked complex was performed for Binding Free Energy and Molecular Dynamics Simulations. Furthermore, DFT and ADME properties were carried out. The results revealed that the designed drug-drug conjugate has a better docking score, ΔGbind and admirable stability throughout the simulation when compared with native drugs. In DFT and ADME analyses, the designed drug-drug conjugate has shown good stereo electronic features and pharmaceutical relevant parameters than that of native drugs. The overall results suggested that the designed drug-drug conjugate may be a suitable candidate for BC treatment.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Feminino , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Neoplasias da Mama/patologia , Cloridrato de Bendamustina/uso terapêutico , Antineoplásicos/uso terapêutico , Quinase Syk , Simulação de Acoplamento Molecular
10.
J Biomol Struct Dyn ; 40(10): 4314-4327, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33308046

RESUMO

The bacterial DNA gyrase is an attractive target to identify the novel antibacterial agents. The flavonoid derivatives possess various biological activities such as antimicrobial, anti-inflammatory and anticancer activities. The aim of present study is to identify the potential molecule from flavonoid derivatives against Staphylococcus aureus using atomistic simulation namely Molecular Docking, Quantum Chemical and Molecular Dynamics. The molecules Cpd58, Cpd65 and Cpd70 are identified as potential molecules through molecular docking approaches by exploring through the N - H…O hydrogen bonding interactions with Asn31 and Glu35 of Gyrase B. To confirm the intramolecular charge transfer in the flavonoid derivatives, Frontier Molecular Orbital (FMO) calculation was performed at M06/6-31g(d) level in gas phase. The lowest HOMO-LUMO gap was calculated for Cpd58, Cpd65 and Cpd70 among the selected compounds used in this study. Molecular dynamics simulation were carried out for Cpd58 and Cpd70 for a time period of 50 ns and found to be stable throughout the analysis. Therefore, the identified compounds are found to be a potent inhibitor for GyrB of S. aureus that can be validated by experimental studies. Communicated by Ramaswamy H. Sarma.


Assuntos
Flavonoides , Staphylococcus aureus , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/metabolismo , DNA Girase/química , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
11.
Front Mol Biosci ; 8: 637122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291081

RESUMO

COVID-19 is one of the members of the coronavirus family that can easily assail humans. As of now, 10 million people are infected and above two million people have died from COVID-19 globally. Over the past year, several researchers have made essential advances in discovering potential drugs. Up to now, no efficient drugs are available on the market. The present study aims to identify the potent phytocompounds from different medicinal plants (Zingiber officinale, Cuminum cyminum, Piper nigrum, Curcuma longa, and Allium sativum). In total, 227 phytocompounds were identified and screened against the proteins S-ACE2 and M pro through structure-based virtual screening approaches. Based on the binding affinity score, 30 active phytocompounds were selected. Amongst, the binding affinity for beta-sitosterol and beta-elemene against S-ACE2 showed -12.0 and -10.9 kcal/mol, respectively. Meanwhile, the binding affinity for beta-sitosterol and beta-chlorogenin against M pro was found to be -9.7 and -8.4 kcal/mol, respectively. Further, the selected compounds proceeded with molecular dynamics simulation, prime MM-GBSA analysis, and ADME/T property checks to understand the stability, interaction, conformational changes, binding free energy, and pharmaceutical relevant parameters. Moreover, the hotspot residues such as Lys31 and Lys353 for S-ACE2 and catalytic dyad His41 and Cys145 for M pro were actively involved in the inhibition of viral entry. From the in silico analyses, we anticipate that this work could be valuable to ongoing novel drug discovery with potential treatment for COVID-19.

12.
J Med Microbiol ; 69(8): 1062-1078, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32773005

RESUMO

Introduction. Acinetobacter baumannii is a critical priority pathogen listed by the World Health Organization due to increasing levels of resistance to carbapenem classes of antibiotics. It causes wound and other nosocomial infections, which can be life-threatening. Hence, there is an urgent need for the development of new classes of antibiotics.Aim. To study the interaction of carabapenems with class D beta-lactamases (oxacillinases) and analyse drug resistance by studying enzyme-substrate complexes using modelling approaches as a means of establishing correlations with the phenotypic data.Methodology. The three-dimensional structures of carbapenems (doripenem, ertapenem, imipenem and meropenem) were obtained from DrugBank and screened against class D beta-lactamases. Further, the study was extended with their variants. The variants' structure was homology-modelled using the Schrödinger Prime module (Schrödinger LLC, NY, USA).Results. The first discovered intrinsic beta-lactamase of Acinetobacter baumannii, OXA-51, had a binding energy value of -40.984 kcal mol-1, whereas other OXA-51 variants, such as OXA-64, OXA-110 and OXA-111, have values of -60.638, -66.756 and -67.751 kcal mol-1, respectively. The free energy values of OXA-51 variants produced better results than those of other groups.Conclusions. Imipenem and meropenem showed MIC values of 2 and 8 µg ml-1, respectively against OXA-51 in earlier studies, indicating that these are the most effective drugs for treatment of A. baumannii infection. According to our results, OXA-51 is an active enzyme that shows better interactions and is capable of hydrolyzing carbapenems. When correlating the hydrogen-bonding interaction with MIC values, the predicted results are in good agreement and might provide initial insights into performing similar studies related to OXA variants or other antibiotic-enzyme-based studies.


Assuntos
Acinetobacter baumannii/enzimologia , Carbapenêmicos/química , beta-Lactamases/química , Ampicilina/química , Carbapenêmicos/farmacologia , Domínio Catalítico , Simulação por Computador , Doripenem/química , Ertapenem/química , Hidrólise , Meropeném/química , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , beta-Lactamases/metabolismo
13.
J Phys Chem B ; 124(50): 11349-11356, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33264018

RESUMO

Cysteine proteases play a major role in many life processes and are the target of key drugs. The reaction mechanism of these enzymes is a complex process, which involves several steps that are divided into two main groups: acylation and deacylation. In this work, we studied the energy profile for the acylation and a part of the deacylation reaction of three different enzymes, cruzain, papain, and the Q19A-mutated papain with the benzyloxycarbonyl-phenylalanylarginine-4-methylcoumaryl-7-amide (CBZ-FR-AMC) substrate. The calculations were performed using the EVB and PDLD/S-LRA methods. The overall agreement between the calculated and observed results is encouraging and indicates that we captured the correct reaction mechanism. Finally, our finding indicates that the minimum of the reaction profile, between the acylation and deacylation steps, should provide an excellent state for the binding of covalent inhibitors.


Assuntos
Cisteína Proteases , Acilação , Catálise , Cinética , Papaína/metabolismo
14.
ACS Catal ; 7(5): 3301-3305, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-29082065

RESUMO

Computer-aided enzyme design presents a major challenge since in most cases it has not resulted in an impressive catalytic power. The reasons for the problems with computational design include the use of nonquantitative approaches, but they may also reflect other difficulties that are not completely obvious. Thus, it is very useful to try to learn from the trend in directed evolution experiments. Here we explore the nature of the refinement of Kemp eliminases by directed evolution, trying to gain an understanding of related requirements from computational design. The observed trend in the directed evolution refinement of KE07 and HG3 are reproduced, showing that in the case of KE07 the directed evolution leads to ground-state destabilization, whereas in the case of HG3 the directed evolution leads to transition-state stabilization. The nature of the different paths of the directed evolution is examined and discussed. The present study seems to indicate that computer-aided enzyme design may require more than calculations of the effect of single mutations and should be extended to calculations of the effect of simultaneous multiple mutations (that make a few residues preorganized effectively). However, the analysis of two known evolution paths can still be accomplished using the relevant sequences and structures. Thus, by comparing two directed evolution paths of Kemp eliminases we reached the important conclusion that the more effective path leads to transition-state stabilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA