Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunology ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720202

RESUMO

Our newly developed menthyl esters of valine and isoleucine exhibit anti-inflammatory properties beyond those of the well-known menthol in macrophages stimulated by lipopolysaccharide (LPS) and in a mouse model of colitis induced by sodium dextran sulfate. Unlike menthol, which acts primarily through the cold-sensitive TRPM8 channel, these menthyl esters displayed unique mechanisms that operate independently of this receptor. They readily penetrated target cells and efficiently suppressed LPS-stimulated tumour necrosis factor-alpha (Tnf) expression mediated by liver X receptor (LXR), a key nuclear receptor that regulates intracellular cholesterol and lipid balance. The menthyl esters showed affinity for LXR and enhanced the transcriptional activity through their non-competitive and potentially synergistic agonistic effect. This effect can be attributed to the crucial involvement of SCD1, an enzyme regulated by LXR, which is central to lipid metabolism and plays a key role in the anti-inflammatory response. In addition, we discovered that the menthyl esters showed remarkable efficacy in suppressing adipogenesis in 3T3-L1 adipocytes at the mitotic clonal expansion stage in an LXR-independent manner as well as in mice subjected to diet-induced obesity. These multiple capabilities of our compounds establish them as formidable allies in the fight against inflammation and obesity, paving the way for a range of potential therapeutic applications.

2.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674500

RESUMO

JAV1-associated ubiquitin ligase 1 (JUL1) is a RING-type E3 ubiquitin ligase that catalyzes ubiquitination of JAV1, a jasmonate signaling repressor, in Arabidopsis thaliana in response to herbivore attack. Here we present a new insight into the nature of JUL1 as a multi-targeting enzyme for not only JAV1 but also transcription factors (TFs) screened using in vitro and in vivo protein interaction assays. Reporter assays using protoplasts showed that the JUL1-interacting TFs (JiTFs), including ERF15, bZIP53 and ORA59, were involved in transcriptional activation of jasmonate-responsive PDF1.2 and abscisic acid-responsive GEA6. Likewise, assays using mutant plants suggested that the 3 JiTFs were indeed responsible for transcriptional regulation of PDF1.2 and/or GEA6, and ERF15 and ORA59 were substantially responsible for the anti-herbivore trait. In vitro protein ubiqutination assays showed that JUL1 catalyzed ubiqutination of JAV1 but not any of the TFs. This was in accord with the finding that JUL1 abolished JAV1's interference with ERF15 function, according to the reporter assay. Moreover, of great interest is our finding that ERF15 but not bZIP53 or ORA59 serves as a scaffold for the JAV1/JUL1 system, indicating that there is narrow selectivity of the transcriptional reprogramming by the JAV1/JUL1 system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligases , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Plant Physiol ; 179(4): 1273-1284, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30573672

RESUMO

Jasmonates regulate plant defense and development. In Arabidopsis (Arabidopsis thaliana), JASMONATE-ASSOCIATED VQ-MOTIF GENE1 (JAV1/VQ22) is a repressor of jasmonate-mediated defense responses and is degraded through the ubiquitin-26S proteasome system after herbivory. We found that JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), a RING-type E3 ubiquitin ligase, interacted with JAV1. JUL1 interacted with JAV1 in the nucleus to ubiquitinate JAV1, leading to proteasomal degradation of JAV1. The transcript levels of JUL1 and JAV1 were coordinately and positively regulated by the CORONATINE INSENSITIVE1-dependent signaling pathway in the jasmonate signaling network, but in a manner that was not dependent on CORONATINE INSENSITIVE1-mediated signaling upon herbivory by Spodoptera litura Gain or loss of function of JUL1 modulated the expression levels of the defensin gene PDF1.2 in leaves, conferring on the plants various defense properties against the generalist herbivore S. litura Because neither the JUL1 mutant nor overexpression lines showed any obvious developmental defects, we concluded that the JAV1/JUL1 system functions as a specific coordinator of reprogramming of plant defense responses. Altogether, our findings offer insight into the mechanisms by which the JAV1/JUL1 system acts specifically to coordinate plant defense responses without interfering with plant development or growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
4.
BMC Plant Biol ; 15: 275, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26556605

RESUMO

BACKGROUND: Protein ubiquitination is a ubiquitous mechanism in eukaryotes. In Arabidopsis, ubiquitin modification is mainly mediated by two ubiquitin activating enzymes (E1s), 37 ubiquitin conjugating enzymes (E2s), and more than 1300 predicted ubiquitin ligase enzymes (E3s), of which ~470 are RING-type E3s. A large proportion of the RING E3's gene products have yet to be characterised in vitro, likely because of the laborious work involved in large-scale cDNA cloning and protein expression, purification, and characterisation. In addition, several E2s, which might be necessary for the activity of certain E3 ligases, cannot be expressed by Escherichia coli or cultured insect cells and, therefore, remain uncharacterised. RESULTS: Using the RIKEN Arabidopsis full-length cDNA library (RAFL) with the 'split-primer' PCR method and a wheat germ cell-free system, we established protein libraries of Arabidopsis E2 and RING E3 enzymes. We expressed 35 Arabidopsis E2s including six enzymes that have not been previously expressed, and 204 RING proteins, most of which had not been functionally characterised. Thioester assays using dithiothreitol (DTT) showed DTT-sensitive ubiquitin thioester formation for all E2s expressed. In expression assays of RING proteins, 31 proteins showed high molecular smears, which are probably the result of their functional activity. The activities of another 27 RING proteins were evaluated with AtUBC10 and/or a group of different E2s. All the 27 RING E3s tested showed ubiquitin ligase activity, including 17 RING E3s. Their activities are reported for the first time. CONCLUSION: The wheat germ cell-free system used in our study, which is a eukaryotic expression system and more closely resembles the endogenous expression of plant proteins, is very suitable for expressing Arabidopsis E2s and RING E3s in their functional form. In addition, the protein libraries described here can be used for further understanding E2-E3 specificities and as platforms for protein-protein interaction screening.


Assuntos
Arabidopsis/genética , DNA de Plantas , Biblioteca Gênica , Proteínas de Plantas/genética , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Arabidopsis/metabolismo , Triticum , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
5.
Nat Commun ; 8(1): 1004, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042542

RESUMO

Gibberellin (GA) is a major hormone for plant growth and development. GA response is derived from the degradation of DELLA repressor proteins after GA-dependent complex formation of the GID1 GA receptor with DELLA. Genistein is a known tyrosine (Tyr) kinase inhibitor and inhibits DELLA degradation. However, the biological role of Tyr phosphorylation on the GA response remains unclear. Here, we demonstrate that GARU (GA receptor RING E3 ubiquitin ligase) mediates ubiquitin-dependent degradation of GID1, and that the TAGK2 plant Tyr-kinase is a target of genistein and inhibits GARU-GID1A interactions by phosphorylation of GARU at Tyr321. Genistein induces degradation of GID1 and accumulation of DELLA. Conversely, Arabidopsis garu mutant and TAGK2-overexpressing plants accelerate GID1 stabilization and DELLA degradation. Under salt stress, GARU suppresses seed germination. We propose that GA response is negatively regulated by GARU-dependent GID1 ubiquitination and positively by Tyr phosphorylation of GARU by TAGK2, and genistein inhibits GA signaling by TAGK2 inhibition.Plants respond to gibberellins via GID1-dependent degradation of DELLA proteins. Here, Nemoto et al. show that the gibberellin response is positively regulated by tyrosine phosphorylation of GARU, an E3 ubiquitin ligase that mediates degradation of GID1.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Giberelinas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Superfície Celular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Genisteína , Fosforilação , Plantas Geneticamente Modificadas , Salinidade , Sementes/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação
6.
Sci Rep ; 3: 1872, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23695148

RESUMO

The emission of a specific blend of volatiles in response to Mythimna separata (herbivore-induced plant volatiles, HIPVs) plays a great ecological role by priming neighbouring plants. Maize plants placed downwind of infested, conspecific plants showed reduced larval development not only immediately after exposure to HIPVs but also when receiver plants were tested after a time lag of up to 5 days, compared to those exposed to volatiles from uninfested plants and tested after the same time lag. The molecular basis of this plant memory was, in part, the similarly recalled expression of a Bowman-Birk type trypsin inhibitor (TI) gene, in a jasmonic acid induction-independent manner. Moreover, in the promoter region of TI, a suite of methylation sites was found to be demethylated by the HIPV treatment. These findings provide an innovative mechanism for the epigenetic basis of the memory of HIPV-mediated habituation for plant defence.


Assuntos
Herbivoria/efeitos dos fármacos , Larva/imunologia , Doenças das Plantas/imunologia , Fenômenos Fisiológicos Vegetais , Compostos Orgânicos Voláteis/farmacologia , Zea mays/imunologia , Animais , Ciclopentanos/farmacologia , Metilação de DNA , DNA de Plantas , Resistência à Doença , Epigenômica , Regulação da Expressão Gênica de Plantas , Herbivoria/fisiologia , Larva/efeitos dos fármacos , Larva/genética , Larva/parasitologia , Oxilipinas/farmacologia , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Doenças das Plantas/prevenção & controle , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Zea mays/efeitos dos fármacos , Zea mays/genética , Zea mays/parasitologia
7.
PLoS One ; 6(10): e24594, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22022359

RESUMO

A blend of volatile organic compounds (VOCs) emitted from plants induced by herbivory enables the priming of defensive responses in neighboring plants. These effects may provide insights useful for pest control achieved with transgenic-plant-emitted volatiles. We therefore investigated, under both laboratory and greenhouse conditions, the priming of defense responses in plants (lima bean and corn) by exposing them to transgenic-plant-volatiles (VOCos) including (E)-ß-ocimene, emitted from transgenic tobacco plants (NtOS2) that were constitutively overexpressing (E)-ß-ocimene synthase. When lima bean plants that had previously been placed downwind of NtOS2 in an open-flow tunnel were infested by spider mites, they were more defensive to spider mites and more attractive to predatory mites, in comparison to the infested plants that had been placed downwind of wild-type tobacco plants. This was similarly observed when the NtOS2-downwind maize plants were infested with Mythimna separata larvae, resulting in reduced larval growth and greater attraction of parasitic wasps (Cotesia kariyai). In a greenhouse experiment, we also found that lima bean plants (VOCos-receiver plants) placed near NtOS2 were more attractive when damaged by spider mites, in comparison to the infested plants that had been placed near the wild-type plants. More intriguingly, VOCs emitted from infested VOCos-receiver plants affected their conspecific neighboring plants to prime indirect defenses in response to herbivory. Altogether, these data suggest that transgenic-plant-emitted volatiles can enhance the ability to prime indirect defenses via both plant-plant and plant-plant-plant communications.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Imunidade Vegetal/efeitos dos fármacos , Plantas/efeitos dos fármacos , Plantas/imunologia , Compostos Orgânicos Voláteis/farmacologia , Monoterpenos Acíclicos , Alcenos/análise , Alcenos/farmacologia , Animais , Fabaceae/efeitos dos fármacos , Fabaceae/fisiologia , Feminino , Larva/efeitos dos fármacos , Larva/fisiologia , Mariposas/efeitos dos fármacos , Mariposas/fisiologia , Plantas/genética , Plantas Geneticamente Modificadas , Tetranychidae/efeitos dos fármacos , Tetranychidae/fisiologia , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/fisiologia , Vespas/efeitos dos fármacos , Vespas/fisiologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA