Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37848036

RESUMO

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Assuntos
Síndrome de COVID-19 Pós-Aguda , Serotonina , Humanos , COVID-19/complicações , Progressão da Doença , Inflamação , Síndrome de COVID-19 Pós-Aguda/sangue , Síndrome de COVID-19 Pós-Aguda/patologia , Serotonina/sangue , Viroses
2.
Cell ; 184(7): 1858-1864.e10, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33631096

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the coronavirus disease 2019 (COVID-19) pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 431 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 251 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that ∼20% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but they were boosted upon SARS-CoV-2 infection.


Assuntos
Alphacoronavirus/imunologia , Anticorpos Antivirais , Betacoronavirus/imunologia , COVID-19/imunologia , Adolescente , Adulto , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Teste Sorológico para COVID-19 , Criança , Pré-Escolar , Chlorocebus aethiops , Proteção Cruzada , Reações Cruzadas , Suscetibilidade a Doenças , Células HEK293 , Humanos , Lactente , Recém-Nascido , Células Vero
3.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550790

RESUMO

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Assuntos
Vírus da Dengue , Dengue , Proteínas de Membrana , Proteínas Nucleares , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
4.
Nature ; 585(7825): 414-419, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641828

RESUMO

Zika virus (ZIKV) belongs to the family Flaviviridae, and is related to other viruses that cause human diseases. Unlike other flaviviruses, ZIKV infection can cause congenital neurological disorders and replicates efficiently in reproductive tissues1-3. Here we show that the envelope protein (E) of ZIKV is polyubiquitinated by the E3 ubiquitin ligase TRIM7 through Lys63 (K63)-linked polyubiquitination. Accordingly, ZIKV replicates less efficiently in the brain and reproductive tissues of Trim7-/- mice. Ubiquitinated E is present on infectious virions of ZIKV when they are released from specific cell types, and enhances virus attachment and entry into cells. Specifically, K63-linked polyubiquitin chains directly interact with the TIM1 (also known as HAVCR1) receptor of host cells, which enhances virus entry in cells as well as in brain tissue in vivo. Recombinant ZIKV mutants that lack ubiquitination are attenuated in human cells and in wild-type mice, but not in live mosquitoes. Monoclonal antibodies against K63-linked polyubiquitin specifically neutralize ZIKV and reduce viraemia in mice. Our results demonstrate that the ubiquitination of ZIKV E is an important determinant of virus entry, tropism and pathogenesis.


Assuntos
Ubiquitinação , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus , Zika virus/metabolismo , Zika virus/patogenicidade , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Encéfalo/metabolismo , Linhagem Celular , Culicidae/citologia , Culicidae/virologia , Endossomos/metabolismo , Feminino , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Humanos , Masculino , Fusão de Membrana , Camundongos , Especificidade de Órgãos , Poliubiquitina/imunologia , Poliubiquitina/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Tropismo Viral , Viremia/imunologia , Viremia/prevenção & controle , Viremia/virologia , Replicação Viral , Zika virus/química , Zika virus/genética , Infecção por Zika virus/prevenção & controle , Infecção por Zika virus/virologia
5.
Nucleic Acids Res ; 52(13): 7447-7464, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38884215

RESUMO

The Orthoflavivirus NS3 helicase (NS3h) is crucial in virus replication, representing a potential drug target for pathogenesis. NS3h utilizes nucleotide triphosphate (ATP) for hydrolysis energy to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. Intermediate states along the ATP hydrolysis cycle and conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. Extensive molecular dynamics simulations of West Nile virus NS3h+ssRNA in the apo, ATP, ADP+Pi and ADP bound states were used to model the conformational ensembles along this cycle. Energetic and structural clustering analyses depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). Based on these results, MVIL mutants (D471L, D471N and D471E) were found to have a substantial reduction in ATPase activity and RNA replication compared to the wild-type. Simulations of the mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.


Assuntos
Trifosfato de Adenosina , Simulação de Dinâmica Molecular , RNA Helicases , Proteínas não Estruturais Virais , Vírus do Nilo Ocidental , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Vírus do Nilo Ocidental/enzimologia , Vírus do Nilo Ocidental/genética , RNA Helicases/metabolismo , RNA Helicases/química , RNA Helicases/genética , Trifosfato de Adenosina/metabolismo , Difosfato de Adenosina/metabolismo , Difosfato de Adenosina/química , Motivos de Aminoácidos , Mutação , Nucleotídeos/metabolismo , Nucleotídeos/química , Hidrólise , Replicação Viral/genética , Conformação Proteica , Proteases Virais , Serina Endopeptidases , Nucleosídeo-Trifosfatase , RNA Helicases DEAD-box
6.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603748

RESUMO

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Influenza Humana , Imunoglobulina G/imunologia , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Formação de Anticorpos , Influenza Humana/imunologia , Influenza Humana/virologia , COVID-19/imunologia , COVID-19/virologia , Switching de Imunoglobulina , SARS-CoV-2/fisiologia , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Humanos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/fisiologia
7.
PLoS Pathog ; 18(1): e1010255, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073387

RESUMO

Nucleoside modified mRNA combined with Acuitas Therapeutics' lipid nanoparticles (LNPs) has been shown to support robust humoral immune responses in many preclinical animal vaccine studies and later in humans with the SARS-CoV-2 vaccination. We recently showed that this platform is highly inflammatory due to the LNPs' ionizable lipid component. The inflammatory property is key to support the development of potent humoral immune responses. However, the mechanism by which this platform drives T follicular helper (Tfh) cells and humoral immune responses remains unknown. Here we show that lack of Langerhans cells or cDC1s neither significantly affected the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cells and humoral immune responses, nor susceptibility towards the lethal challenge of influenza and SARS-CoV-2. However, the combined deletion of these two DC subsets led to a significant decrease in the induction of PR8 HA and SARS-CoV-2 RBD-specific Tfh cell and humoral immune responses. Despite these observed defects, these mice remained protected from lethal influenza and SARS-CoV-2 challenges. We further found that IL-6, unlike neutrophils, was required to generate normal Tfh cells and antibody responses, but not for protection from influenza challenge. In summary, here we bring evidence that the mRNA-LNP platform can support the induction of protective immune responses in the absence of certain innate immune cells and cytokines.


Assuntos
Vacinas contra COVID-19/imunologia , Células Dendríticas/imunologia , Vacinas contra Influenza/imunologia , Células de Langerhans/imunologia , Lipossomos/imunologia , Vacinas Sintéticas/imunologia , Vacinas de mRNA/imunologia , Animais , COVID-19/imunologia , Camundongos , Nanopartículas , Infecções por Orthomyxoviridae/imunologia , SARS-CoV-2/imunologia
8.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34593624

RESUMO

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome-CoV, and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors, including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR-tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35-0.74], P = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type-dependent manner. Targeting GSK-3 may therefore provide an approach to treat COVID-19 and future coronavirus outbreaks.


Assuntos
COVID-19/prevenção & controle , Proteínas do Nucleocapsídeo de Coronavírus/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Compostos de Lítio/uso terapêutico , Adulto , Idoso , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Células HEK293 , Humanos , Compostos de Lítio/farmacologia , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Estudos Retrospectivos
9.
Mol Cell ; 57(2): 329-340, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25616068

RESUMO

Hepatitis C virus (HCV) is a leading cause of liver disease, but insight into virus-host interactions remains limited. We systematically used affinity purification/mass spectrometry to define the host interactions of all ten HCV proteins in hepatoma cells. We combined these studies with RNAi knockdown of corresponding genes using a two-step scoring approach to generate a map of 139 high-confidence HCV-host protein-protein interactions. We found mitochondrial proteins highly involved in HCV infection and characterized an interaction between the viral core protein and host protein within bgcn homolog (WIBG). Expression of core prevents WIBG from binding its regular interaction partners Y14 and Magoh, two known mediators of the nonsense-mediated mRNA decay pathway. We discovered that this surveillance pathway is disrupted in HCV-infected cells, causing potentially harmful transcripts to accumulate. Our study provides a comprehensive view of HCV-host interactions and uncovers mechanisms for how HCV perturbs host functions during infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mapas de Interação de Proteínas , Transporte Proteico , Proteoma/metabolismo , Proteômica , Proteínas de Transporte Vesicular/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
10.
Nature ; 535(7610): 164-8, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27383988

RESUMO

Flaviviruses infect hundreds of millions of people annually, and no antiviral therapy is available. We performed a genome-wide CRISPR/Cas9-based screen to identify host genes that, when edited, resulted in reduced flavivirus infection. Here, we validated nine human genes required for flavivirus infectivity, and these were associated with endoplasmic reticulum functions including translocation, protein degradation, and N-linked glycosylation. In particular, a subset of endoplasmic reticulum-associated signal peptidase complex (SPCS) proteins was necessary for proper cleavage of the flavivirus structural proteins (prM and E) and secretion of viral particles. Loss of SPCS1 expression resulted in markedly reduced yield of all Flaviviridae family members tested (West Nile, Dengue, Zika, yellow fever, Japanese encephalitis, and hepatitis C viruses), but had little impact on alphavirus, bunyavirus, or rhabdovirus infection or the surface expression or secretion of diverse host proteins. We found that SPCS1 dependence could be bypassed by replacing the native prM protein leader sequences with a class I major histocompatibility complex (MHC) antigen leader sequence. Thus, SPCS1, either directly or indirectly via its interactions with unknown host proteins, preferentially promotes the processing of specific protein cargo, and Flaviviridae have a unique dependence on this signal peptide processing pathway. SPCS1 and other signal processing pathway members could represent pharmacological targets for inhibiting infection by the expanding number of flaviviruses of medical concern.


Assuntos
Sistemas CRISPR-Cas/genética , Flavivirus/fisiologia , Genoma Humano/genética , Fatores Celulares Derivados do Hospedeiro/genética , Sinais Direcionadores de Proteínas/fisiologia , Animais , Linhagem Celular , Drosophila/citologia , Drosophila/genética , Drosophila/virologia , Descoberta de Drogas , Retículo Endoplasmático/metabolismo , Feminino , Flavivirus/metabolismo , Infecções por Flavivirus/genética , Infecções por Flavivirus/virologia , Glicosilação , Interações Hospedeiro-Patógeno/genética , Humanos , Proteínas de Membrana/genética , Terapia de Alvo Molecular , Transporte Proteico/genética , Proteólise , Reprodutibilidade dos Testes , Serina Endopeptidases/genética , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Estruturais Virais/metabolismo
11.
J Biol Chem ; 291(31): 16240-8, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27235396

RESUMO

The HIV-1 transactivator protein Tat is a critical regulator of HIV transcription primarily enabling efficient elongation of viral transcripts. Its interactions with RNA and various host factors are regulated by ordered, transient post-translational modifications. Here, we report a novel Tat modification, monomethylation at lysine 71 (K71). We found that Lys-71 monomethylation (K71me) is catalyzed by KMT7, a methyltransferase that also targets lysine 51 (K51) in Tat. Using mass spectrometry, in vitro enzymology, and modification-specific antibodies, we found that KMT7 monomethylates both Lys-71 and Lys-51 in Tat. K71me is important for full Tat transactivation, as KMT7 knockdown impaired the transcriptional activity of wild type (WT) Tat but not a Tat K71R mutant. These findings underscore the role of KMT7 as an important monomethyltransferase regulating HIV transcription through Tat.


Assuntos
HIV-1/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Ativação Transcricional , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Células Jurkat , Lisina/genética , Lisina/metabolismo , Metilação , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
12.
J Biol Chem ; 288(14): 9915-9923, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23420847

RESUMO

The triglyceride-synthesizing enzyme acyl CoA:diacylglycerol acyltransferase 1 (DGAT1) plays a critical role in hepatitis C virus (HCV) infection by recruiting the HCV capsid protein core onto the surface of cellular lipid droplets (LDs). Here we find a new interaction between the non-structural protein NS5A and DGAT1 and show that the trafficking of NS5A to LDs depends on DGAT1 activity. DGAT1 forms a complex with NS5A and core and facilitates the interaction between both viral proteins. A catalytically inactive mutant of DGAT1 (H426A) blocks the localization of NS5A, but not core, to LDs in a dominant-negative manner and impairs the release of infectious viral particles, underscoring the importance of DGAT1-mediated translocation of NS5A to LDs in viral particle production. We propose a model whereby DGAT1 serves as a cellular hub for HCV core and NS5A proteins, guiding both onto the surface of the same subset of LDs, those generated by DGAT1. These results highlight the critical role of DGAT1 as a host factor for HCV infection and as a potential drug target for antiviral therapy.


Assuntos
Diacilglicerol O-Aciltransferase/química , Diacilglicerol O-Aciltransferase/fisiologia , Regulação Viral da Expressão Gênica , Hepacivirus/metabolismo , Proteínas não Estruturais Virais/química , Animais , Antivirais/farmacologia , Capsídeo/química , Linhagem Celular , Genes Dominantes , Células HEK293 , Hepatite C/virologia , Humanos , Lentivirus/genética , Lipídeos/química , Camundongos , Microscopia de Fluorescência/métodos , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Triglicerídeos/química , Triglicerídeos/metabolismo , Proteínas não Estruturais Virais/fisiologia
13.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38077049

RESUMO

The flavivirus NS3 helicase (NS3h), a highly conserved protein, plays a pivotal role in virus replication and thus represents a potential drug target for flavivirus pathogenesis. NS3h utilizes nucleotide triphosphate, such as ATP, for hydrolysis energy (ATPase) to translocate on single-stranded nucleic acids, which is an important step in the unwinding of double-stranded nucleic acids. The intermediate states along the ATP binding and hydrolysis cycle, as well as the conformational changes between these states, represent important yet difficult-to-identify targets for potential inhibitors. We use extensive molecular dynamics simulations of apo, ATP, ADP+Pi, and ADP bound to WNV NS3h+ssRNA to model the conformational ensembles along this cycle. Energetic and structural clustering analyses on these trajectories depict a clear trend of differential enthalpic affinity of NS3h with ADP, demonstrating a probable mechanism of hydrolysis turnover regulated by the motif-VI loop (MVIL). These findings were experimentally corroborated using viral replicons encoding three mutations at the D471 position. Replication assays using these mutants demonstrated a substantial reduction in viral replication compared to the wild-type. Molecular simulations of the D471 mutants in the apo state indicate a shift in MVIL populations favoring either a closed or open 'valve' conformation, affecting ATP entry or stabilization, respectively. Combining our molecular modeling with experimental evidence highlights a conformation-dependent role for MVIL as a 'valve' for the ATP-pocket, presenting a promising target for antiviral development.

14.
PLoS Genet ; 5(12): e1000767, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20011113

RESUMO

Toxin-antitoxin (TA) systems, stress-responsive genetic elements ubiquitous in microbial genomes, are unusually abundant in the major human pathogen Mycobacterium tuberculosis. Why M. tuberculosis has so many TA systems and what role they play in the unique biology of the pathogen is unknown. To address these questions, we have taken a comprehensive approach to identify and functionally characterize all the TA systems encoded in the M. tuberculosis genome. Here we show that 88 putative TA system candidates are present in M. tuberculosis, considerably more than previously thought. Comparative genomic analysis revealed that the vast majority of these systems are conserved in the M. tuberculosis complex (MTBC), but largely absent from other mycobacteria, including close relatives of M. tuberculosis. We found that many of the M. tuberculosis TA systems are located within discernable genomic islands and were thus likely acquired recently via horizontal gene transfer. We discovered a novel TA system located in the core genome that is conserved across the genus, suggesting that it may fulfill a role common to all mycobacteria. By expressing each of the putative TA systems in M. smegmatis, we demonstrate that 30 encode a functional toxin and its cognate antitoxin. We show that the toxins of the largest family of TA systems, VapBC, act by inhibiting translation via mRNA cleavage. Expression profiling demonstrated that four systems are specifically activated during stresses likely encountered in vivo, including hypoxia and phagocytosis by macrophages. The expansion and maintenance of TA genes in the MTBC, coupled with the finding that a subset is transcriptionally activated by stress, suggests that TA systems are important for M. tuberculosis pathogenesis.


Assuntos
Antitoxinas/metabolismo , Toxinas Bacterianas/metabolismo , Evolução Biológica , Mycobacterium tuberculosis/metabolismo , Expressão Gênica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade
15.
Viruses ; 14(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35746597

RESUMO

Without sufficient herd immunity through either vaccination or natural infection, the coronavirus disease 2019 pandemic is unlikely to be controlled. Waning immunity with the currently approved vaccines suggests the need to evaluate vaccines causing the induction of long-term responses. Here, we report the immunogenicity and efficacy of our adjuvanted single-dose Rabies-vectored SARS-CoV-2 S1 vaccine, CORAVAX, in hamsters. CORAVAX induces high SARS-CoV-2 S1-specific and virus-neutralizing antibodies (VNAs) that prevent weight loss, viral loads, disease, lung inflammation, and the cytokine storm in hamsters. We also observed high Rabies VNA titers. In summary, CORAVAX is a promising dual-antigen vaccine candidate for clinical evaluation against SARS-CoV-2 and Rabies virus.


Assuntos
COVID-19 , Vacina Antirrábica , Vírus da Raiva , Raiva , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Cricetinae , Humanos , Raiva/prevenção & controle , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
16.
PLoS One ; 16(6): e0253089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34166398

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating global pandemic, infecting over 43 million people and claiming over 1 million lives, with these numbers increasing daily. Therefore, there is urgent need to understand the molecular mechanisms governing SARS-CoV-2 pathogenesis, immune evasion, and disease progression. Here, we show that SARS-CoV-2 can block IRF3 and NF-κB activation early during virus infection. We also identify that the SARS-CoV-2 viral proteins NSP1 and NSP13 can block interferon activation via distinct mechanisms. NSP1 antagonizes interferon signaling by suppressing host mRNA translation, while NSP13 downregulates interferon and NF-κB promoter signaling by limiting TBK1 and IRF3 activation, as phospho-TBK1 and phospho-IRF3 protein levels are reduced with increasing levels of NSP13 protein expression. NSP13 can also reduce NF-κB activation by both limiting NF-κB phosphorylation and nuclear translocation. Last, we also show that NSP13 binds to TBK1 and downregulates IFIT1 protein expression. Collectively, these data illustrate that SARS-CoV-2 bypasses multiple innate immune activation pathways through distinct mechanisms.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , COVID-19/imunologia , Núcleo Celular/imunologia , Fator Regulador 3 de Interferon/imunologia , Proteínas de Ligação a RNA/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/imunologia , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , COVID-19/genética , Núcleo Celular/genética , Células HeLa , Humanos , Fator Regulador 3 de Interferon/genética , NF-kappa B/genética , NF-kappa B/imunologia , Fosforilação/genética , Fosforilação/imunologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas de Ligação a RNA/genética , SARS-CoV-2/genética , Transdução de Sinais/genética , Proteínas não Estruturais Virais/genética
17.
Cell Rep ; 35(1): 108959, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811811

RESUMO

There is an urgent need for antivirals to treat the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To identify new candidates, we screen a repurposing library of ∼3,000 drugs. Screening in Vero cells finds few antivirals, while screening in human Huh7.5 cells validates 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we find that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we find nine drugs are antiviral in respiratory cells, seven of which have been used in humans, and three are US Food and Drug Administration (FDA) approved, including cyclosporine. We find that the antiviral activity of cyclosporine is targeting Cyclophilin rather than calcineurin, revealing essential host targets that have the potential for rapid clinical implementation.


Assuntos
Tratamento Farmacológico da COVID-19 , Ciclosporina/farmacologia , Reposicionamento de Medicamentos , Células Epiteliais/metabolismo , Pulmão/metabolismo , SARS-CoV-2/metabolismo , Animais , COVID-19/metabolismo , COVID-19/patologia , Chlorocebus aethiops , Células Epiteliais/patologia , Células Epiteliais/virologia , Humanos , Pulmão/patologia , Pulmão/virologia , Serina Endopeptidases/metabolismo , Estados Unidos , United States Food and Drug Administration , Células Vero
18.
Sci Immunol ; 6(59)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34010142

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic, resulting millions of infections and deaths with few effective interventions available. Here, we demonstrate that SARS-CoV-2 evades interferon (IFN) activation in respiratory epithelial cells, resulting in a delayed response in bystander cells. Since pretreatment with IFNs can block viral infection, we reasoned that pharmacological activation of innate immune pathways could control SARS-CoV-2 infection. To identify potent antiviral innate immune agonists, we screened a panel of 75 microbial ligands that activate diverse signaling pathways and identified cyclic dinucleotides (CDNs), canonical STING agonists, as antiviral. Since CDNs have poor bioavailability, we tested the small molecule STING agonist diABZI, and found that it potently inhibits SARS-CoV-2 infection of diverse strains including variants of concern (B.1.351) by transiently stimulating IFN signaling. Importantly, diABZI restricts viral replication in primary human bronchial epithelial cells and in mice in vivo. Our study provides evidence that activation of STING may represent a promising therapeutic strategy to control SARS-CoV-2.


Assuntos
Antivirais/farmacologia , Benzimidazóis/farmacologia , COVID-19/prevenção & controle , Interferons/imunologia , Proteínas de Membrana/agonistas , Animais , Linhagem Celular , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Evasão da Resposta Imune/imunologia , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Células Vero , Replicação Viral/efeitos dos fármacos
19.
medRxiv ; 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-33655282

RESUMO

The coronaviruses responsible for severe acute respiratory syndrome (SARS-CoV), COVID-19 (SARS-CoV-2), Middle East respiratory syndrome (MERS-CoV), and other coronavirus infections express a nucleocapsid protein (N) that is essential for viral replication, transcription, and virion assembly. Phosphorylation of N from SARS-CoV by glycogen synthase kinase 3 (GSK-3) is required for its function and inhibition of GSK-3 with lithium impairs N phosphorylation, viral transcription, and replication. Here we report that the SARS-CoV-2 N protein contains GSK-3 consensus sequences and that this motif is conserved in diverse coronaviruses, raising the possibility that SARS-CoV-2 may be sensitive to GSK-3 inhibitors including lithium. We conducted a retrospective analysis of lithium use in patients from three major health systems who were PCR tested for SARS-CoV-2. We found that patients taking lithium have a significantly reduced risk of COVID-19 (odds ratio = 0.51 [0.35 - 0.74], p = 0.005). We also show that the SARS-CoV-2 N protein is phosphorylated by GSK-3. Knockout of GSK3A and GSK3B demonstrates that GSK-3 is essential for N phosphorylation. Alternative GSK-3 inhibitors block N phosphorylation and impair replication in SARS-CoV-2 infected lung epithelial cells in a cell-type dependent manner. Targeting GSK-3 may therefore provide a new approach to treat COVID-19 and future coronavirus outbreaks. SIGNIFICANCE: COVID-19 is taking a major toll on personal health, healthcare systems, and the global economy. With three betacoronavirus epidemics in less than 20 years, there is an urgent need for therapies to combat new and existing coronavirus outbreaks. Our analysis of clinical data from over 300,000 patients in three major health systems demonstrates a 50% reduced risk of COVID-19 in patients taking lithium, a direct inhibitor of glycogen synthase kinase-3 (GSK-3). We further show that GSK-3 is essential for phosphorylation of the SARS-CoV-2 nucleocapsid protein and that GSK-3 inhibition blocks SARS-CoV-2 infection in human lung epithelial cells. These findings suggest an antiviral strategy for COVID-19 and new coronaviruses that may arise in the future.

20.
Curr Opin Immunol ; 66: 90-97, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32682290

RESUMO

Flaviviruses are a group of important emerging and re-emerging human pathogens that cause worldwide epidemics with thousands of deaths annually. Flaviviruses are small, enveloped, positive-sense, single-stranded RNA viruses that are obligate intracellular pathogens, relying heavily on host cell machinery for productive replication. Proteomic approaches have become an increasingly powerful tool to investigate the mechanisms by which viruses interact with host proteins and manipulate cellular processes to promote infection. Here, we review recent advances in employing quantitative proteomics techniques to improve our understanding of the complex interplay between flaviviruses and host cells. We describe new findings on our understanding of how flaviviruses impact protein-protein interactions, protein-RNA interactions, protein abundance, and post-translational modifications to modulate viral infection.


Assuntos
Flavivirus/isolamento & purificação , Proteínas/análise , Proteômica , Animais , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Proteínas/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA