Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Biol Chem ; 300(6): 107349, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718861

RESUMO

The dynamic and reversible modification of nuclear and cytoplasmic proteins by O-GlcNAcylation significantly impacts the function and dysfunction of the immune system. O-GlcNAcylation plays crucial roles under both physiological and pathological conditions in the biochemical regulation of all immune cell functions. Three and a half decades of knowledge acquired in this field is merely sufficient to perceive that what we know is just the prelude. This review attempts to mark out the known regulatory roles of O-GlcNAcylation in key signal transduction pathways and specific protein functions in the immune system and adumbrate ensuing questions toward the unknown functions.


Assuntos
Acetilglucosamina , Transdução de Sinais , Humanos , Animais , Acetilglucosamina/metabolismo , Sistema Imunitário/metabolismo , Processamento de Proteína Pós-Traducional , Glicosilação
2.
Cell Mol Life Sci ; 81(1): 89, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351330

RESUMO

Sam68 is a ubiquitously expressed KH-domain containing RNA-binding protein highly studied for its involvement in regulating multiple steps of RNA metabolism. Sam68 also contains multiple protein-protein interaction regions such as proline-rich regions, tyrosine phosphorylation sites, and arginine methylation sites, all of which facilitate its participation as an adaptor protein in multiple signaling pathways, likely independent of its RNA-binding role. This review focuses on providing a comprehensive report on the adaptor roles of Sam68 in inflammatory signaling and inflammatory diseases. The insights presented here have the potential to open new avenues in inflammation research and justify targeting Sam68 to control aberrant inflammatory responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Transdução de Sinais , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , RNA/metabolismo
3.
Cell Mol Life Sci ; 78(23): 7635-7648, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34693458

RESUMO

Sam68 is an RNA-binding protein with an adaptor role in signal transduction. Our previous work identified critical proinflammatory and apoptotic functions for Sam68, downstream of the TNF/TNFR1 and TLR2/3/4 pathways. Recent studies have shown elevated Sam68 in inflamed tissues from rheumatoid arthritis and ulcerative colitis (UC) patients, suggesting that Sam68 contributes to chronic inflammatory diseases. Here, we hypothesized that deletion of Sam68 is protective against experimental colitis in vivo, via reductions in TNF-associated inflammatory signaling. We used Sam68 knockout (KO) mice to study the role of Sam68 in experimental colitis, including its contributions to TNF-induced inflammatory gene expression in three-dimensional intestinal organoid cultures. We also studied the expression of Sam68 and inflammatory genes in colon tissues of UC patients. Sam68 KO mice treated with an acute course of DSS exhibited significantly less weight loss and histopathological inflammation compared to wild-type controls, suggesting that Sam68 contributes to experimental colitis. Bone marrow transplants showed no pathologic role for hematopoietic cell-specific Sam68, suggesting that non-hematopoietic Sam68 drives intestinal inflammation. Gene expression analyses showed that Sam68 deficiency reduced the expression of proinflammatory genes in colon tissues from DSS-treated mice, as well as TNF-treated three-dimensional colonic organoids. We also found that inflammatory genes, such as TNF, CCR2, CSF2, IL33 and CXCL10, as well as Sam68 protein, were upregulated in inflamed colon tissues of UC patients. This report identifies Sam68 as an important inflammatory driver in response to intestinal epithelial damage, suggesting that targeting Sam68 may hold promise to treat UC patients.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Colite Ulcerativa/patologia , Colite/patologia , Proteínas de Ligação a DNA/metabolismo , Inflamação/patologia , Mucosa Intestinal/patologia , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Estudos de Casos e Controles , Colite/induzido quimicamente , Colite/metabolismo , Colite Ulcerativa/etiologia , Colite Ulcerativa/metabolismo , Proteínas de Ligação a DNA/genética , Sulfato de Dextrana/toxicidade , Feminino , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/genética , Proteínas de Ligação a RNA/genética , Transdução de Sinais
4.
Glycobiology ; 31(7): 812-826, 2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-33442719

RESUMO

O-GlcNAcylation is a reversible post-translational protein modification that regulates fundamental cellular processes including immune responses and autoimmunity. Previously, we showed that hyperglycemia increases O-GlcNAcylation of the transcription factor, nuclear factor kappaB c-Rel at serine residue 350 and enhances the transcription of the c-Rel-dependent proautoimmune cytokines interleukin-2, interferon gamma and granulocyte macrophage colony stimulating factor in T cells. c-Rel also plays a critical role in the transcriptional regulation of forkhead box P3 (FOXP3)-the master transcription factor that governs development and function of Treg cells. Here we show that the regulatory effect of c-Rel O-GlcNAcylation is gene-dependent, and in contrast to its role in enhancing the expression of proautoimmune cytokines, it suppresses the expression of FOXP3. Hyperglycemia-induced O-GlcNAcylation-dependent suppression of FOXP3 expression was found in vivo in two mouse models of autoimmune diabetes; streptozotocin-induced diabetes and spontaneous diabetes in nonobese diabetic mice. Mechanistically, we show that both hyperglycemia-induced and chemically enhanced cellular O-GlcNAcylation decreases c-Rel binding at the FOXP3 promoter and negatively regulates FOXP3 expression. Mutation of the O-GlcNAcylation site in c-Rel, (serine 350 to alanine), augments T cell receptor-induced FOXP3 expression and resists the O-GlcNAcylation-dependent repression of FOXP3 expression. This study reveals c-Rel S350 O-GlcNAcylation as a novel molecular mechanism inversely regulating immunosuppressive FOXP3 expression and proautoimmune gene expression in autoimmune diabetes with potential therapeutic implications.


Assuntos
Diabetes Mellitus Experimental , Fatores de Transcrição Forkhead , Proteínas Proto-Oncogênicas c-rel , Animais , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Camundongos , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Proteínas Proto-Oncogênicas c-rel/farmacologia , Linfócitos T Reguladores
5.
Cell Mol Life Sci ; 77(17): 3325-3340, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32130429

RESUMO

B cells mediate humoral immune response and contribute to the regulation of cellular immune response. Members of the Nuclear Factor kappaB (NF-κB) family of transcription factors play a major role in regulating B-cell functions. NF-κB subunit c-Rel is predominantly expressed in lymphocytes, and in B cells, it is required for survival, proliferation, and antibody production. Dysregulation of c-Rel expression and activation alters B-cell homeostasis and is associated with B-cell lymphomas and autoimmune pathologies. Based on its essential roles, c-Rel may serve as a potential prognostic and therapeutic target. This review summarizes the current understanding of the multifaceted role of c-Rel in B cells and B-cell diseases.


Assuntos
Linfócitos B/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Apoptose , Autoimunidade , Linfócitos B/imunologia , Centro Germinativo/metabolismo , Doença Granulomatosa Crônica/imunologia , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Humanos , Linfoma de Células B/imunologia , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-rel/química
6.
Mol Cell ; 43(2): 167-79, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21620750

RESUMO

The RNA-binding protein Sam68 is implicated in various cellular processes including RNA metabolism, apoptosis, and signal transduction. Here we identify a role of Sam68 in TNF-induced NF-κB activation and apoptosis. We found that Sam68 is recruited to the TNF receptor, and its deficiency dramatically reduces RIP recruitment and ubiquitylation. It also impairs cIAP1 recruitment and maintenance of recruited TRAF2 at the TNF receptor. In its absence, activation of the TAK1-IKK kinase complex is defective, greatly reducing signal transduction. Sam68 is also found as a part of the TNF-induced cytoplasmic caspase-8-FADD complex. RIP is not recruited to this complex in Sam68 knockout cells, and caspase activation is virtually absent. These findings delineate previously unknown functions for Sam68 in the TNF signaling pathway, where it acts as a signaling adaptor both in the membrane-associated complex I and in the cytoplasmic complex II, regulating both NF-κB activation and apoptosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose , Proteínas de Ligação a DNA/metabolismo , NF-kappa B/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Caspase 8/genética , Caspase 8/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/genética , Proteína de Domínio de Morte Associada a Fas/genética , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HeLa , Humanos , Modelos Biológicos , Proteínas de Ligação a RNA/genética
7.
Cell Immunol ; 333: 85-92, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29887419

RESUMO

O-linked ß-N-acetyl glucosamine modification (O-GlcNAcylation) is a dynamic, reversible posttranslational modification of cytoplasmic and nuclear proteins. O-GlcNAcylation depends on nutrient availability and the hexosamine biosynthetic pathway (HBP), which produces the donor substrate UDP-GlcNAc. O-GlcNAcylation is mediated by a single enzyme, O-GlcNAc transferase (OGT), which adds GlcNAc and another enzyme, O-GlcNAcase (OGA), which removes O-GlcNAc from proteins. O-GlcNAcylation controls vital cellular processes including transcription, translation, the cell cycle, metabolism, and cellular stress. Aberrant O-GlcNAcylation has been implicated in various pathologies including Alzheimer's disease, diabetes, obesity, and cancer. Growing evidences indicate that O-GlcNAcylation plays crucial roles in regulating immunity and inflammatory responses, especially under hyperglycemic conditions. This review will highlight the emerging functions of O-GlcNAcylation in mammalian immunity under physiological and various pathological conditions.


Assuntos
Acilação/imunologia , Imunidade/imunologia , N-Acetilglucosaminiltransferases/imunologia , Animais , Humanos , Inflamação/imunologia
8.
Blood ; 124(9): 1502-12, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25006123

RESUMO

The oncomir microRNA-125b (miR-125b) is upregulated in a variety of human neoplastic blood disorders and constitutive upregulation of miR-125b in mice can promote myeloid and B-cell leukemia. We found that miR-125b promotes myeloid and B-cell neoplasm by inducing tumorigenesis in hematopoietic progenitor cells. Our study demonstrates that miR-125b induces myeloid leukemia by enhancing myeloid progenitor output from stem cells as well as inducing immortality, self-renewal, and tumorigenesis in myeloid progenitors. Through functional and genetic analyses, we demonstrated that miR-125b induces myeloid and B-cell leukemia by inhibiting interferon regulatory factor 4 (IRF4) but through distinct mechanisms; it induces myeloid leukemia through repressing IRF4 at the messenger RNA (mRNA) level without altering the genomic DNA and induces B-cell leukemia via genetic deletion of the gene encoding IRF4.


Assuntos
Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Feminino , Deleção de Genes , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Fatores Reguladores de Interferon/antagonistas & inibidores , Leucemia de Células B/etiologia , Leucemia Mieloide/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Neoplasias , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Regulação para Cima
9.
Proc Natl Acad Sci U S A ; 109(4): 1023-8, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22203967

RESUMO

Nuclear factor κB (NF-κB) is a transcription factor that regulates various aspects of immune response, cell death, and differentiation as well as cancer. In this study we introduce the Py-Im polyamide 1 that binds preferentially to the sequences 5'-WGGWWW-3' and 5'GGGWWW-3'. The compound is capable of binding to κB sites and reducing the expression of various NF-κB-driven genes including IL6 and IL8 by qRT-PCR. Chromatin immunoprecipitation experiments demonstrate a reduction of p65 occupancy within the proximal promoters of those genes. Genome-wide expression analysis by RNA-seq compares the DNA-binding polyamide with the well-characterized NF-κB inhibitor PS1145, identifies overlaps and differences in affected gene groups, and shows that both affect comparable numbers of TNF-α-inducible genes. Inhibition of NF-κB DNA binding via direct displacement of the transcription factor is a potential alternative to the existing antagonists.


Assuntos
DNA/metabolismo , Regulação da Expressão Gênica/fisiologia , NF-kappa B/metabolismo , Nylons/metabolismo , Transcrição Gênica/fisiologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Microscopia Confocal , NF-kappa B/antagonistas & inibidores , Desnaturação de Ácido Nucleico , Nylons/farmacologia , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Piridinas , Reação em Cadeia da Polimerase em Tempo Real
10.
Front Immunol ; 15: 1327405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601153

RESUMO

Introduction: Acute myeloid leukemia (AML) is the most common acute leukemia in adults with an overall poor prognosis and high relapse rate. Multiple factors including genetic abnormalities, differentiation defects and altered cellular metabolism contribute to AML development and progression. Though the roles of oxidative phosphorylation and glycolysis are defined in AML, the role of the hexosamine biosynthetic pathway (HBP), which regulates the O-GlcNAcylation of cytoplasmic and nuclear proteins, remains poorly defined. Methods: We studied the expression of the key enzymes involved in the HBP in AML blasts and stem cells by RNA sequencing at the single-cell and bulk level. We performed flow cytometry to study OGT protein expression and global O-GlcNAcylation. We studied the functional effects of inhibiting O-GlcNAcylation on transcriptional activation in AML cells by Western blotting and real time PCR and on cell cycle by flow cytometry. Results: We found higher expression levels of the key enzymes in the HBP in AML as compared to healthy donors in whole blood. We observed elevated O-GlcNAc Transferase (OGT) and O-GlcNAcase (OGA) expression in AML stem and bulk cells as compared to normal hematopoietic stem and progenitor cells (HSPCs). We also found that both AML bulk cells and stem cells show significantly enhanced OGT protein expression and global O-GlcNAcylation as compared to normal HSPCs, validating our in silico findings. Gene set analysis showed substantial enrichment of the NF-κB pathway in AML cells expressing high OGT levels. Inhibition of O-GlcNAcylation decreased NF-κB nuclear translocation and the expression of selected NF-κB-dependent genes controlling cell cycle. It also blocked cell cycle progression suggesting a link between enhanced O-GlcNAcylation and NF-κB activation in AML cell survival and proliferation. Discussion: Our study suggests the HBP may prove a potential target, alone or in combination with other therapeutic approaches, to impact both AML blasts and stem cells. Moreover, as insufficient targeting of AML stem cells by traditional chemotherapy is thought to lead to relapse, blocking HBP and O-GlcNAcylation in AML stem cells may represent a novel promising target to control relapse.


Assuntos
Leucemia Mieloide Aguda , NF-kappa B , Humanos , NF-kappa B/metabolismo , Vias Biossintéticas , Hexosaminas , Leucemia Mieloide Aguda/genética , Células-Tronco/metabolismo , Recidiva , RNA/metabolismo
11.
STAR Protoc ; 4(1): 102127, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853707

RESUMO

Here, we provide a protocol for the design, expression, purification, and functional studies of an engineered trimeric version of the receptor-binding domain (tRBD) of SARS-CoV-2 spike protein. We describe the use of tRBD to block SARS-CoV-2 spike pseudovirus and true virus binding to cellular angiotensin converting enzyme-2 (ACE2), thereby blocking viral infection. This protocol is applicable to generate a trimeric version of any protein of interest. For complete details on the use and execution of this protocol, please refer to Basavarajappa et al. (2022).1.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica
12.
Front Immunol ; 13: 841299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479087

RESUMO

Natural killer (NK) cells mediate killing of malignant and virus-infected cells, a property that is explored as a cell therapy approach in the clinic. Various cell intrinsic and extrinsic factors affect NK cell cytotoxic function, and an improved understanding of the mechanism regulating NK cell function is necessary to accomplish better success with NK cell therapeutics. Here, we explored the role of O-GlcNAcylation, a previously unexplored molecular mechanism regulating NK cell function. O-GlcNAcylation is a post-translational modification mediated by O-GlcNAc transferase (OGT) that adds the monosaccharide N-acetylglucosamine to serine and threonine residues on intracellular proteins and O-GlcNAcase (OGA) that removes the sugar. We found that stimulation of NK cells with the cytokines interleukin-2 (IL-2) and IL-15 results in enhanced O-GlcNAcylation of several cellular proteins. Chemical inhibition of O-GlcNAcylation using OSMI-1 was associated with a decreased expression of NK cell receptors (NKG2D, NKG2A, NKp44), cytokines [tumor necrosis factor (TNF)-α, interferon (IFN-γ)], granulysin, soluble Fas ligand, perforin, and granzyme B in NK cells. Importantly, inhibition of O-GlcNAcylation inhibited NK cell cytotoxicity against cancer cells. However, increases in O-GlcNAcylation following OGA inhibition using an OGA inhibitor or shRNA-mediated suppression did not alter NK cell cytotoxicity. Finally, we found that NK cells pretreated with OSMI-1 to inhibit O-GlcNAcylation showed compromised cytotoxic activity against tumor cells in vivo in a lymphoma xenograft mouse model. Overall, this study provides the seminal insight into the role of O-GlcNAcylation in regulating NK cell cytotoxic function.


Assuntos
Acetilglucosamina , Processamento de Proteína Pós-Traducional , Acetilglucosamina/metabolismo , Animais , Citocinas/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Camundongos , Serina/metabolismo
13.
iScience ; 25(3): 103856, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35128350

RESUMO

New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19-related deaths and medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell-derived host defense peptide that has anti-viral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical measurements confirm that hBD-2 indeed binds to the CoV-2-receptor-binding domain (RBD) (KD ∼ 2µM by surface plasmon resonance), preventing it from binding to ACE2-expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSVG-mediated infection, of ACE2-expressing human cells with an IC50 of 2.8 ± 0.4 µM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as agents to prevent SARS-CoV-2 infection.

14.
iScience ; 25(8): 104716, 2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-35813876

RESUMO

The COVID-19 pandemic has caused over four million deaths and effective methods to control CoV-2 infection, in addition to vaccines, are needed. The CoV-2 binds to the ACE2 on human cells through the receptor-binding domain (RBD) of the trimeric spike protein. Our modeling studies show that a modified trimeric RBD (tRBD) can interact with three ACE2 receptors, unlike the native spike protein, which binds to only one ACE2. We found that tRBD binds to the ACE2 with 58-fold higher affinity than monomeric RBD (mRBD) and blocks spike-dependent pseudoviral infection over 4-fold more effectively compared to the mRBD. Although mRBD failed to block CoV-2 USA-WA1/2020 infection, tRBD efficiently blocked the true virus infection in plaque assays. We show that tRBD is a potent inhibitor of CoV-2 through both competitive binding to the ACE2 and steric hindrance, and has the potential to emerge as a first-line therapeutic method to control COVID-19.

15.
Front Cell Dev Biol ; 9: 751761, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722537

RESUMO

Nuclear factor-kappaB (NF-κB) is a pleiotropic, evolutionarily conserved transcription factor family that plays a central role in regulating immune responses, inflammation, cell survival, and apoptosis. Great strides have been made in the past three decades to understand the role of NF-κB in physiological and pathological conditions. Carcinogenesis is associated with constitutive activation of NF-κB that promotes tumor cell proliferation, angiogenesis, and apoptosis evasion. NF-κB is ubiquitously expressed, however, its activity is under tight regulation by inhibitors of the pathway and through multiple posttranslational modifications. O-GlcNAcylation is a dynamic posttranslational modification that controls NF-κB-dependent transactivation. O-GlcNAcylation acts as a nutrient-dependent rheostat of cellular signaling. Increased uptake of glucose and glutamine by cancer cells enhances NF-κB O-GlcNAcylation. Growing evidence indicates that O-GlcNAcylation of NF-κB is a key molecular mechanism that regulates cancer cell proliferation, survival and metastasis and acts as link between inflammation and cancer. In this review, we are attempting to summarize the current understanding of the cohesive role of NF-κB O-GlcNAcylation in inflammation and cancer.

16.
FEBS J ; 288(22): 6365-6391, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33387379

RESUMO

Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.


Assuntos
Inflamação/metabolismo , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Humanos , Transdução de Sinais
17.
Front Immunol ; 12: 652786, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995369

RESUMO

Natural Killer (NK) cells are cytotoxic lymphocytes critical to the innate immune system. We found that germline deficiency of NF-κB c-Rel results in a marked decrease in cytotoxic function of NK cells, both in vitro and in vivo, with no significant differences in the stages of NK cell development. We found that c-Rel binds to the promoters of perforin and granzyme B, two key proteins required for NK cytotoxicity, and controls their expression. We generated a NK cell specific c-Rel conditional knockout to study NK cell intrinsic role of c- Rel and found that both global and conditional c-Rel deficiency leads to decreased perforin and granzyme B expression and thereby cytotoxic function. We also confirmed the role of c-Rel in perforin and granzyme B expression in human NK cells. c-Rel reconstitution rescued perforin and granzyme B expressions in c-Rel deficient NK cells and restored their cytotoxic function. Our results show a previously unknown role of c-Rel in transcriptional regulation of perforin and granzyme B expressions and control of NK cell cytotoxic function.


Assuntos
Citotoxicidade Imunológica , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/metabolismo , Animais , Células Cultivadas , Citocinas/biossíntese , Citotoxicidade Imunológica/genética , Granzimas/metabolismo , Humanos , Melanoma Experimental , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética
18.
bioRxiv ; 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33442698

RESUMO

New approaches to complement vaccination are needed to combat the spread of SARS-CoV-2 and stop COVID-19 related deaths and long-term medical complications. Human beta defensin 2 (hBD-2) is a naturally occurring epithelial cell derived host defense peptide that has antiviral properties. Our comprehensive in-silico studies demonstrate that hBD-2 binds the site on the CoV-2-RBD that docks with the ACE2 receptor. Biophysical and biochemical assays confirm that hBD-2 indeed binds to the CoV-2-receptor binding domain (RBD) (KD ~ 300 nM), preventing it from binding to ACE2 expressing cells. Importantly, hBD-2 shows specificity by blocking CoV-2/spike pseudoviral infection, but not VSV-G mediated infection, of ACE2 expressing human cells with an IC50 of 2.4± 0.1 µM. These promising findings offer opportunities to develop hBD-2 and/or its derivatives and mimetics to safely and effectively use as novel agents to prevent SARS-CoV-2 infection.

19.
iScience ; 23(3): 100876, 2020 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-32062419

RESUMO

NF-κB/Rel family of transcription factors plays a central role in initiation and resolution of inflammatory responses. Here, we identified a function of the NF-κB subunit c-Rel as a transcriptional repressor of inflammatory genes. Genetic deletion of c-Rel substantially potentiates the expression of several TNF-α-induced RelA-dependent mediators of inflammation. v-Rel, the viral homologue of c-Rel, but not RelB, also possesses this repressive function. Mechanistically, we found that c-Rel selectively binds to the co-repressor HDAC1 and competitively binds to the DNA mediating HDAC1 recruitment to the promoters of inflammatory genes. A specific point mutation at tyrosine25 in c-Rel's DNA-binding domain, for which a missense single nucleotide variation (Y25H) exists in humans, completely abrogated its ability to bind DNA and repress TNF-α-induced, RelA-mediated transcription. Our findings reveal that the transactivator NF-κB subunit c-Rel also plays a role as a transcriptional repressor in the maintenance of inflammatory homeostasis.

20.
Elife ; 92020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32175843

RESUMO

The inability of cells to adapt to increased environmental tonicity can lead to inflammatory gene expression and pathogenesis. The Rel family of transcription factors TonEBP and NF-κB p65 play critical roles in the switch from osmoadaptive homeostasis to inflammation, respectively. Here we identified PACT-mediated PKR kinase activation as a marker of the termination of adaptation and initiation of inflammation in Mus musculus embryonic fibroblasts. We found that high stress-induced PACT-PKR activation inhibits the interaction between NF-κB c-Rel and TonEBP essential for the increased expression of TonEBP-dependent osmoprotective genes. This resulted in enhanced formation of TonEBP/NF-κB p65 complexes and enhanced proinflammatory gene expression. These data demonstrate a novel role of c-Rel in the adaptive response to hyperosmotic stress, which is inhibited via a PACT/PKR-dependent dimer redistribution of the Rel family transcription factors. Our results suggest that inhibiting PACT-PKR signaling may prove a novel target for alleviating stress-induced inflammatory diseases.


Cells are sensitive to changes in their environment. For example, maintaining normal salt levels in the blood, also called tonicity, is essential for the health of individual cells and the organism as a whole. Tonicity controls the movement of water in and out of the cell: high levels of salt inside the cell draw water in, while high levels of salt outside the cell draw water out. If salt levels in the environment surrounding the cells become too high, too much water will be drawn out, causing the cells to shrink. Changes in tonicity can cause the cell to become stressed. Initially, cells adapt to this stress by switching on sets of genes that help restore fluid balance and allow the cell to regain its normal shape and size. If the increase in tonicity exceeds tolerable stress levels and harms the cell, this initiates an inflammatory response which ultimately leads to cell death. However, it remained unclear how cells switch from adapting to responding with inflammation. Now, Farabaugh et al. have used an experimental system which mimics high salt to identify the mechanism that allows cells to switch between these two responses. The experiments showed that when salt levels are too high, cells switch on a stress sensing protein called PACT, which activates another protein called PKR. When PACT was deleted from mouse cells, this led to a decrease in the activity of inflammatory genes, and prevented the cells from self-destructing. Other proteins that are involved in the adaptive and inflammatory response are the NF-κB family of proteins and TonEBP. Farabaugh et al. found that under low intensity stress, when salt levels outside the cell are slightly too high, a family member of NF-κB works with TonEBP to switch on adaptive genes. But, if salt levels continue to rise, PACT activates and turns on PKR. This blocks the interaction between NF-κB and TonEBP, allowing another family member of NF-κB to interact with TonEBP instead. This switches the adaptive response off and the inflammatory response on. There are many diseases that involve changes in tonicity, including diabetes, cancer, inflammatory bowel disease, and dry eye syndrome. Understanding the proteins involved in the adaptive and inflammatory response could lead to the development of drugs that help to protect cells from stress-induced damage.


Assuntos
Proteínas de Transporte/metabolismo , Pressão Osmótica , Proteínas de Ligação a RNA/metabolismo , eIF-2 Quinase/metabolismo , Adaptação Fisiológica , Animais , Proteínas de Transporte/genética , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-rel/genética , Proteínas Proto-Oncogênicas c-rel/metabolismo , Interferência de RNA , Proteínas de Ligação a RNA/genética , Transdução de Sinais , eIF-2 Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA