Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39063237

RESUMO

Increasing exposure to unfavorable temperatures and water deficit imposes major constraints on most crops worldwide. Despite several studies regarding coffee responses to abiotic stresses, transcriptome modulation due to simultaneous stresses remains poorly understood. This study unravels transcriptomic responses under the combined action of drought and temperature in leaves from the two most traded species: Coffea canephora cv. Conilon Clone 153 (CL153) and C. arabica cv. Icatu. Substantial transcriptomic changes were found, especially in response to the combination of stresses that cannot be explained by an additive effect. A large number of genes were involved in stress responses, with photosynthesis and other physiologically related genes usually being negatively affected. In both genotypes, genes encoding for protective proteins, such as dehydrins and heat shock proteins, were positively regulated. Transcription factors (TFs), including MADS-box genes, were down-regulated, although responses were genotype-dependent. In contrast to Icatu, only a few drought- and heat-responsive DEGs were recorded in CL153, which also reacted more significantly in terms of the number of DEGs and enriched GO terms, suggesting a high ability to cope with stresses. This research provides novel insights into the molecular mechanisms underlying leaf Coffea responses to drought and heat, revealing their influence on gene expression.


Assuntos
Coffea , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Temperatura Alta , Transcriptoma , Coffea/genética , Coffea/metabolismo , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Genótipo
2.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958884

RESUMO

Ongoing climate change poses a great risk to the natural environment and the sustainability of agriculture [...].


Assuntos
Mudança Climática , Meio Ambiente , Agricultura , Produtos Agrícolas
3.
Int J Mol Sci ; 24(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36834624

RESUMO

Drought is a major constraint to plant growth and productivity worldwide and will aggravate as water availability becomes scarcer. Although elevated air [CO2] might mitigate some of these effects in plants, the mechanisms underlying the involved responses are poorly understood in woody economically important crops such as Coffea. This study analyzed transcriptome changes in Coffea canephora cv. CL153 and C. arabica cv. Icatu exposed to moderate (MWD) or severe water deficits (SWD) and grown under ambient (aCO2) or elevated (eCO2) air [CO2]. We found that changes in expression levels and regulatory pathways were barely affected by MWD, while the SWD condition led to a down-regulation of most differentially expressed genes (DEGs). eCO2 attenuated the impacts of drought in the transcripts of both genotypes but mostly in Icatu, in agreement with physiological and metabolic studies. A predominance of protective and reactive oxygen species (ROS)-scavenging-related genes, directly or indirectly associated with ABA signaling pathways, was found in Coffea responses, including genes involved in water deprivation and desiccation, such as protein phosphatases in Icatu, and aspartic proteases and dehydrins in CL153, whose expression was validated by qRT-PCR. The existence of a complex post-transcriptional regulatory mechanism appears to occur in Coffea explaining some apparent discrepancies between transcriptomic, proteomic, and physiological data in these genotypes.


Assuntos
Coffea , Coffea/genética , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Carbono/metabolismo , Resistência à Seca , Proteômica , Café/genética , Secas , Água/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 22(6)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803866

RESUMO

Understanding the effect of extreme temperatures and elevated air (CO2) is crucial for mitigating the impacts of the coffee industry. In this work, leaf transcriptomic changes were evaluated in the diploid C. canephora and its polyploid C. arabica, grown at 25 °C and at two supra-optimal temperatures (37 °C, 42 °C), under ambient (aCO2) or elevated air CO2 (eCO2). Both species expressed fewer genes as temperature rose, although a high number of differentially expressed genes (DEGs) were observed, especially at 42 °C. An enrichment analysis revealed that the two species reacted differently to the high temperatures but with an overall up-regulation of the photosynthetic machinery until 37 °C. Although eCO2 helped to release stress, 42 °C had a severe impact on both species. A total of 667 photosynthetic and biochemical related-DEGs were altered with high temperatures and eCO2, which may be used as key probe genes in future studies. This was mostly felt in C. arabica, where genes related to ribulose-bisphosphate carboxylase (RuBisCO) activity, chlorophyll a-b binding, and the reaction centres of photosystems I and II were down-regulated, especially under 42°C, regardless of CO2. Transcriptomic changes showed that both species were strongly affected by the highest temperature, although they can endure higher temperatures (37 °C) than previously assumed.


Assuntos
Dióxido de Carbono/farmacologia , Coffea/genética , Diploide , Regulação da Expressão Gênica de Plantas , Poliploidia , Temperatura , Transcriptoma/genética , Coffea/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Genótipo , Fotossíntese/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos
5.
Int J Mol Sci ; 21(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287164

RESUMO

As atmospheric [CO2] continues to rise to unprecedented levels, understanding its impact on plants is imperative to improve crop performance and sustainability under future climate conditions. In this context, transcriptional changes promoted by elevated CO2 (eCO2) were studied in genotypes from the two major traded coffee species: the allopolyploid Coffea arabica (Icatu) and its diploid parent, C. canephora (CL153). While Icatu expressed more genes than CL153, a higher number of differentially expressed genes were found in CL153 as a response to eCO2. Although many genes were found to be commonly expressed by the two genotypes under eCO2, unique genes and pathways differed between them, with CL153 showing more enriched GO terms and metabolic pathways than Icatu. Divergent functional categories and significantly enriched pathways were found in these genotypes, which altogether supports contrasting responses to eCO2. A considerable number of genes linked to coffee physiological and biochemical responses were found to be affected by eCO2 with the significant upregulation of photosynthetic, antioxidant, and lipidic genes. This supports the absence of photosynthesis down-regulation and, therefore, the maintenance of increased photosynthetic potential promoted by eCO2 in these coffee genotypes.


Assuntos
Dióxido de Carbono/metabolismo , Coffea/genética , Coffea/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma , Pressão do Ar , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Genótipo , Anotação de Sequência Molecular
6.
Antonie Van Leeuwenhoek ; 112(1): 31-46, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30315373

RESUMO

Actinorhizal plants are a group of perennial dicotyledonous angiosperms, comprised of more than 200 species, most of which can establish root-nodule symbiosis with the nitrogen fixing actinobacteria of the genus Frankia. They are key providers of fundamental goods and services and can give a major contribution to mitigate the combined effects of climate changes, human population growth and loss of biodiversity. This aspect is particularly relevant for the developing economies of many African countries, which are highly exposed to climate and anthropogenic disturbances. In this work we have analyzed the distribution, conservation and uses of actinorhizal species native to or introduced in Africa. A total of 42 taxa distributed over six botanical families (Betulaceae, Casuarinaceae, Myricaceae, Elaeagnaceae, Rhamnaceae and Coriariaceae) were identified. The vast majority is able to thrive under a range of diverse environments and has multiple ecological and economic potential. More than half of the identified species belong to the genus Morella (Myricaceae), most of them native to Middle, Eastern and Southern Africa. Although the information about the conservation status and uses of Morella spp. is largely incomplete, the available data is indicative of their potential in e.g. forestry and agroforestry, food and medicine. Therefore, efforts should be made to upgrade actinorhizal research in Africa towards the sustainable use of biodiversity at the service of local (bio)economies.


Assuntos
Conservação dos Recursos Naturais , Magnoliopsida/classificação , África , Frankia/genética , Frankia/fisiologia , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/microbiologia , Magnoliopsida/fisiologia , Fixação de Nitrogênio , Simbiose , Árvores/classificação , Árvores/microbiologia , Árvores/fisiologia
7.
Int J Mol Sci ; 21(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861944

RESUMO

Casuarina glauca displays high levels of salt tolerance, but very little is known about how this tree adapts to saline conditions. To understand the molecular basis of C. glauca response to salt stress, we have analyzed the proteome from branchlets of plants nodulated by nitrogen-fixing Frankia Thr bacteria (NOD+) and non-nodulated plants supplied with KNO3 (KNO3+), exposed to 0, 200, 400, and 600 mM NaCl. Proteins were identified by Short Gel, Long Gradient Liquid Chromatography coupled to Tandem Mass Spectrometry and quantified by Sequential Window Acquisition of All Theoretical Mass Spectra -Mass Spectrometry. 600 proteins were identified and 357 quantified. Differentially Expressed Proteins (DEPs) were multifunctional and mainly involved in Carbohydrate Metabolism, Cellular Processes, and Environmental Information Processing. The number of DEPs increased gradually with stress severity: (i) from 7 (200 mM NaCl) to 40 (600 mM NaCl) in KNO3+; and (ii) from 6 (200 mM NaCl) to 23 (600 mM NaCl) in NOD+. Protein-protein interaction analysis identified different interacting proteins involved in general metabolic pathways as well as in the biosynthesis of secondary metabolites with different response networks related to salt stress. Salt tolerance in C. glauca is related to a moderate impact on the photosynthetic machinery (one of the first and most important stress targets) as well as to an enhancement of the antioxidant status that maintains cellular homeostasis.


Assuntos
Frankia/fisiologia , Magnoliopsida/fisiologia , Proteínas de Plantas/metabolismo , Nódulos Radiculares de Plantas/fisiologia , Tolerância ao Sal , Magnoliopsida/microbiologia , Espectrometria de Massas/métodos , Proteoma/metabolismo , Proteômica/métodos , Nódulos Radiculares de Plantas/microbiologia , Salinidade , Simbiose
8.
Environ Monit Assess ; 190(8): 484, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30039190

RESUMO

The Neves-Corvo mining complex (MC) situated in southern Portugal exploits one of the most world's important copper deposits. Agricultural soils surrounding the MC, used by the inhabitants for crop production, contain excessive amounts of As, Cu, Pb, and Zn. Thus, a potential risk to human consumption exists if edible plants grow on these substrata. Arsenic and Pb were not detected in edible samples collected near the MC and 5 km away, but in the leaves-structural or adsorbed onto the surface. In general, Zn was the most mobile element in both contaminated and reference areas as seen by the bioaccumulation factors (BAF). The tolerable upper intake (TUI) values for Cu are a reason of concern, since in 57.1% of the cases, the TUI values are above the recommended upper limit of 5 mg/day, in the case of Ficus carica, Cucurbita pepo, and Phaseolus vulgaris, whereas in 28.6% of the cases, the TUI values are near this limit (C. pepo and Citrus x sinensis). The consumption of such vegetables from these areas must be banned or strongly reduced, since long-term accumulation of Cu can cause a chronic toxicity in humans.


Assuntos
Monitoramento Ambiental , Metais Pesados/análise , Mineração , Plantas Comestíveis/química , Poluentes do Solo/análise , Agricultura , Arsênio/análise , Cobre/análise , Humanos , Portugal , Solo/química , Verduras/química
9.
Plant Cell Environ ; 40(7): 1197-1213, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28102545

RESUMO

Calcium-dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress-inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose-phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium-dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.


Assuntos
Resposta ao Choque Frio/fisiologia , Glucosiltransferases/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Proteínas Quinases/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Fosforilação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
10.
BMC Plant Biol ; 16: 38, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26832927

RESUMO

BACKGROUND: Abscission is a highly coordinated developmental process by which plants control vegetative and reproductive organs load. Aiming at get new insights on flower abscission regulation, changes in the global transcriptome, metabolome and physiology were analyzed in 'Thompson Seedless' grapevine (Vitis vinifera L.) inflorescences, using gibberellic acid (GAc) spraying and shading as abscission stimuli, applied at bloom. RESULTS: Natural flower drop rates increased from 63.1% in non-treated vines to 83% and 99% in response to GAc and shade treatments, respectively. Both treatments had a broad effect on inflorescences metabolism. Specific impacts from shade included photosynthesis inhibition, associated nutritional stress, carbon/nitrogen imbalance and cell division repression, whereas GAc spraying induced energetic metabolism simultaneously with induction of nucleotide biosynthesis and carbon metabolism, therefore, disclosing alternative mechanisms to regulate abscission. Regarding secondary metabolism, changes in flavonoid metabolism were the most represented metabolic pathways in the samples collected following GAc treatment while phenylpropanoid and stilbenoid related pathways were predominantly affected in the inflorescences by the shade treatment. However, both GAc and shade treated inflorescences revealed also shared pathways, that involved the regulation of putrescine catabolism, the repression of gibberellin biosynthesis, the induction of auxin biosynthesis and the activation of ethylene signaling pathways and antioxidant mechanisms, although often the quantitative changes occurred on specific transcripts and metabolites of the pathways. CONCLUSIONS: Globally, the results suggest that chemical and environmental cues induced contrasting effects on inflorescence metabolism, triggering flower abscission by different mechanisms and pinpointing the participation of novel abscission regulators. Grapevine showed to be considered a valid model to study molecular pathways of flower abscission competence acquisition, noticeably responding to independent stimuli.


Assuntos
Carbono/metabolismo , Flores/fisiologia , Giberelinas/farmacologia , Vitis/fisiologia , Flores/efeitos dos fármacos , Flores/genética , Genes de Plantas , Metaboloma , Folhas de Planta/metabolismo , RNA de Plantas , Sementes , Transcriptoma , Vitis/genética
11.
Glob Chang Biol ; 22(1): 415-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26363182

RESUMO

The tropical coffee crop has been predicted to be threatened by future climate changes and global warming. However, the real biological effects of such changes remain unknown. Therefore, this work aims to link the physiological and biochemical responses of photosynthesis to elevated air [CO2 ] and temperature in cultivated genotypes of Coffea arabica L. (cv. Icatu and IPR108) and Coffea canephora cv. Conilon CL153. Plants were grown for ca. 10 months at 25/20°C (day/night) and 380 or 700 µl CO2 l(-1) and then subjected to temperature increase (0.5°C day(-1) ) to 42/34°C. Leaf impacts related to stomatal traits, gas exchanges, C isotope composition, fluorescence parameters, thylakoid electron transport and enzyme activities were assessed at 25/20, 31/25, 37/30 and 42/34°C. The results showed that (1) both species were remarkably heat tolerant up to 37/30°C, but at 42/34°C a threshold for irreversible nonstomatal deleterious effects was reached. Impairments were greater in C. arabica (especially in Icatu) and under normal [CO2 ]. Photosystems and thylakoid electron transport were shown to be quite heat tolerant, contrasting to the enzymes related to energy metabolism, including RuBisCO, which were the most sensitive components. (2) Significant stomatal trait modifications were promoted almost exclusively by temperature and were species dependent. Elevated [CO2 ], (3) strongly mitigated the impact of temperature on both species, particularly at 42/34°C, modifying the response to supra-optimal temperatures, (4) promoted higher water-use efficiency under moderately higher temperature (31/25°C) and (5) did not provoke photosynthetic downregulation. Instead, enhancements in [CO2 ] strengthened photosynthetic photochemical efficiency, energy use and biochemical functioning at all temperatures. Our novel findings demonstrate a relevant heat resilience of coffee species and that elevated [CO2 ] remarkably mitigated the impact of heat on coffee physiology, therefore playing a key role in this crop sustainability under future climate change scenarios.


Assuntos
Dióxido de Carbono/metabolismo , Coffea/fisiologia , Temperatura Alta , Fotossíntese/fisiologia , Aclimatação , Mudança Climática , Transporte de Elétrons , Genótipo , Aquecimento Global , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Tilacoides/metabolismo , Água/metabolismo
12.
BMC Genomics ; 15: 371, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24885229

RESUMO

BACKGROUND: Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for which there is scarce molecular/genomic information. Cork oak forests are of great ecological importance and represent a major economic and social resource in Southern Europe and Northern Africa. However, global warming is threatening the cork oak forests by imposing thermal, hydric and many types of novel biotic stresses. Despite the economic and social value of the Q. suber species, few genomic resources have been developed, useful for biotechnological applications and improved forest management. RESULTS: We generated in excess of 7 million sequence reads, by pyrosequencing 21 normalized cDNA libraries derived from multiple Q. suber tissues and organs, developmental stages and physiological conditions. We deployed a stringent sequence processing and assembly pipeline that resulted in the identification of ~159,000 unigenes. These were annotated according to their similarity to known plant genes, to known Interpro domains, GO classes and E.C. numbers. The phylogenetic extent of this ESTs set was investigated, and we found that cork oak revealed a significant new gene space that is not covered by other model species or EST sequencing projects. The raw data, as well as the full annotated assembly, are now available to the community in a dedicated web portal at http://www.corkoakdb.org. CONCLUSIONS: This genomic resource represents the first trancriptome study in a cork producing species. It can be explored to develop new tools and approaches to understand stress responses and developmental processes in forest trees, as well as the molecular cascades underlying cork differentiation and disease response.


Assuntos
Etiquetas de Sequências Expressas , Quercus/genética , Transcriptoma , DNA de Plantas/análise , Biblioteca Gênica , Filogenia , Quercus/crescimento & desenvolvimento , Análise de Sequência de DNA
13.
Plants (Basel) ; 13(14)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39065488

RESUMO

Zinc enrichment of edible food products, through the soil and/or foliar application of fertilizers, is a strategy that can increase the contents of some nutrients, namely Zn. In this context, a workflow for agronomic enrichment with zinc was carried out on irrigated Vitis vinifera cv. Syrah, aiming to evaluate the mobilization of photoassimilates to the winegrapes and the consequences of this for winemaking. During three productive cycles, foliar applications were performed with ZnSO4 or ZnO, at concentrations ranging between 150 and 1350 g.ha-1. The normal vegetation index as well as some photosynthetic parameters indicated that the threshold of Zn toxicity was not reached; it is even worth noting that with ZnSO4, a significant increase in several cases was observed in net photosynthesis (Pn). At harvest, Zn biofortification reached a 1.2 to 2.3-fold increase with ZnSO4 and ZnO, respectively (being significant relative to the control, in two consecutive years, with ZnO at a concentration of 1350 g.ha-1). Total soluble sugars revealed higher values with grapes submitted to ZnSO4 and ZnO foliar applications, which can be advantageous for winemaking. It was concluded that foliar spraying was efficient with ZnO and ZnSO4, showing potential benefits for wine quality without evidencing negative impacts.

14.
Plants (Basel) ; 12(10)2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37653961

RESUMO

Climate change is negatively affecting the coffee value chain, with a direct effect on approximately 100 million people from 80 countries. This has been attributed to the high vulnerability of the two-mainstream species, Coffea arabica and Coffea canephora, to extreme weather events, with notable uneven increases in market prices. Taking into account the narrow genetic plasticity of the commercial coffee cultivars, wild-relatives and underutilized Coffea species are valuable genetic resources. In this work, we have assessed the occurrence of Coffea species in to understand the degree of genetic relationships between Coffea species in the country, as well as the patterns of genetic diversity, differentiation, and genetic structure. Only one wild species was found, C. racemosa, which showed a high level of genetic separation with C. arabica, based on plastid, as well as SSR and SNP analysis. C. arabica presented low levels of diversity likely related to their autogamous nature, while the allogamous C. racemosa presented higher levels of diversity and heterozygosity. The analysis of the functional pathways based on SNPs suggests that the stress signaling pathways are more robust in this species. This novel approach shows that it is vital to introduce more resilient species and increase genomic diversity in climate-smart practices.

15.
Front Plant Sci ; 14: 1320552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38259931

RESUMO

Climate changes boosted the frequency and severity of drought and heat events, with aggravated when these stresses occur simultaneously, turning crucial to unveil the plant response mechanisms to such harsh conditions. Therefore, plant responses/resilience to single and combined exposure to severe water deficit (SWD) and heat were assessed in two cultivars of the main coffee-producing species: Coffea arabica cv. Icatu and C. canephora cv. Conilon Clone 153 (CL153). Well-watered plants (WW) were exposed to SWD under an adequate temperature of 25/20°C (day/night), and thereafter submitted to a gradual increase up to 42/30°C, and a 14-d recovery period (Rec14). Greater protective response was found to single SWD than to single 37/28°C and/or 42/30°C (except for HSP70) in both cultivars, but CL153-SWD plants showed the larger variations of leaf thermal imaging crop water stress index (CWSI, 85% rise at 37/28°C) and stomatal conductance index (IG, 66% decline at 25/20°C). Both cultivars revealed great resilience to SWD and/or 37/28°C, but a tolerance limit was surpassed at 42/30°C. Under stress combination, Icatu usually displayed lower impacts on membrane permeability, and PSII function, likely associated with various responses, usually mostly driven by drought (but often kept or even strengthened under SWD and 42/30°C). These included the photoprotective zeaxanthin and lutein, antioxidant enzymes (superoxide dismutase, Cu,Zn-SOD; ascorbate peroxidase, APX), HSP70, arabinose and mannitol (involving de novo sugar synthesis), contributing to constrain lipoperoxidation. Also, only Icatu showed a strong reinforcement of glutathione reductase activity under stress combination. In general, the activities of antioxidative enzymes declined at 42/30°C (except Cu,Zn-SOD in Icatu and CAT in CL153), but HSP70 and raffinose were maintained higher in Icatu, whereas mannitol and arabinose markedly increased in CL153. Overall, a great leaf plasticity was found, especially in Icatu that revealed greater responsiveness of coordinated protection under all experimental conditions, justifying low PIChr and absence of lipoperoxidation increase at 42/30°C. Despite a clear recovery by Rec14, some aftereffects persisted especially in SWD plants (e.g., membranes), relevant in terms of repeated stress exposure and full plant recovery to stresses.

16.
Plants (Basel) ; 12(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37111835

RESUMO

Rice (Oryza sativa L.) is one of the most economically and socially important cereals in the world. Several strategies such as biofortification have been developed in a way eco-friendly and sustainable to enhance crop productivity. This study implemented an agronomic itinerary in Ariete and Ceres rice varieties in experimental fields using the foliar application of selenium (Se) to increase rice nutritional value. At strategic phases of the plant's development (at the end of booting, anthesis, and at the milky grain stage), they were sprayed with sodium selenate (Na2SeO4) and sodium selenite (Na2SeO3). In the first foliar application plants were sprayed with 500 g Se·ha-1 and in the remaining two foliar applications were sprayed with 300 g Se·ha-1. The effects of Se in the level of micro and macronutrients in brown grains, the localization of Se in these grains, and the subsequent quality parameters such as colorimetric characteristics and total protein were considered. After grain harvesting, the application of selenite showed the highest enrichment in all grain with levels reaching 17.06 µg g-1 Se and 14.28 µg g-1 Se in Ariete and Ceres varieties, respectively. In the Ceres and Ariete varieties, biofortification significantly affected the K and P contents. Regarding Ca, a clear trend prevailed suggesting that Se antagonizes the uptake of it, while for the remaining elements in general (except Mn) no significant differences were noted. Protein content increased with selenite treatment in the Ariete variety but not in Ceres. Therefore, it was possible to conclude, without compromising quality, that there was an increase in the nutritional content of Se in brown rice grain.

17.
Plants (Basel) ; 12(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37050051

RESUMO

One-third of the world's population is suffering from "hidden hunger" due to micronutrient deficiency. Zinc is acquired through diet, leading its deficiency to the development of disorders such as retarded growth, anorexia, infections, and hypogeusia. Accordingly, this study aimed to develop an agronomic workflow for Zn biofortification on two red winegrapes varieties (cv. Castelão and Syrah) and determine the physicochemical implications for winemaking. Both varieties produced in Setúbal (Portugal) were submitted to four foliar applications of ZnSO4 or ZnO (900 and 1350 g ha-1, respectively), during the production cycle. At harvest, Zn biofortification reached a 4.3- and 2.3-fold increase with ZnO 1350 g ha-1 in Castelão and Syrah, respectively (although, with ZnSO4 1350 g ha-1 both varieties revealed an increase in Zn concentration). On a physiological basis, lower values of NDVI were found in the biofortified grapes, although not reflected in photosynthetic parameters with cv. Syrah shows even a potential benefit with the use of Zn fertilizers. Regarding physical and chemical parameters (density, total soluble solids, dry weight, and color), relative to the control no significant changes in both varieties were observed, being suitable for winemaking. It was concluded that ZnSO4 and ZnO foliar fertilization efficiently increased Zn concentration on both varieties without a negative impact on quality, but cv. Castelão showed a better index of Zn biofortification and pointed to a potentially higher quality for winemaking.

18.
Plants (Basel) ; 11(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35684185

RESUMO

This study evaluated the elemental composition of 25 herbal tea plants commonly used in infusions by Portuguese consumers and the contribution to the elemental daily intake of some essential elements. Hydrocotyle asiatica (L.), Matricaria chamomilla (L.), and Melissa officinalis (L.) samples are a rich source of K with around 6.0 mg g-1 while the Asteraceae Silybum marianum (L.) and Echinacea angustifolia (DC.) exhibited 4.9 and 5.6 mg g-1 Ca, respectively. The highest concentrations of S and Zn were noted in Hydrocotyle asiatica (L.), while the highest concentration of Sr was found in Cassia angustifolia (Vahl.). In general, a large variability in the concentrations among different families and plant organs had been observed, except Cu with levels around 30 µg g-1. The principal component analysis (PCA) showed positive correlations between Zn and S and Sr and Ca, also revealing that Hydrocotyle asiatica (L.), Echinacea angustifolia (DC.), Silybum marianum (L.), and Cassia angustifolia (Vahl.) samples, stands out about all other samples regarding the enrichment of macro and micronutrients. The elemental solubility of macronutrients in the infusion is greater than the micronutrient solubility, despite the contribution to the recommended daily intake was weak. As a whole, Cynara scolymus (L.) and Hibiscus sabdariffa (L.) are the species with the best elemental solubilities, followed by Hydrocotyle asiatica (L.). No harmful elements, such as As and Pb, were observed in both the raw material and the infusions.

19.
Plants (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36616278

RESUMO

Inundation, excessive precipitation, or inadequate field drainage can cause waterlogging of cultivated land. It is anticipated that climate change will increase the frequency, intensity, and unpredictability of flooding events. This stress affects 10-15 million hectares of wheat every year, resulting in 20-50% yield losses. Since this crop greatly sustains a population's food demands, providing ca. 20% of the world's energy and protein diets requirements, it is crucial to understand changes in soil and plant physiology under excess water conditions. Variations in redox potential, pH, nutrient availability, and electrical conductivity of waterlogged soil will be addressed, as well as their impacts in major plant responses, such as root system and plant development. Waterlogging effects at the leaf level will also be addressed, with a particular focus on gas exchanges, photosynthetic pigments, soluble sugars, membrane integrity, lipids, and oxidative stress.

20.
Plants (Basel) ; 11(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365395

RESUMO

Climate change and the accelerated rate of population growth are imposing a progressive degradation of natural ecosystems worldwide. In this context, the use of pioneer trees represents a powerful approach to reverse the situation. Among others, N2-fixing actinorhizal trees constitute important elements of plant communities and have been successfully used in land reclamation at a global scale. In this study, we have analyzed the transcriptome of the photosynthetic organs of Casuarina glauca (branchlets) to unravel the molecular mechanisms underlying salt stress tolerance. For that, C. glauca plants supplied either with chemical nitrogen (KNO3+) or nodulated by Frankia (NOD+) were exposed to a gradient of salt concentrations (200, 400, and 600 mM NaCl) and RNA-Seq was performed. An average of ca. 25 million clean reads was obtained for each group of plants, corresponding to 86,202 unigenes. The patterns of differentially expressed genes (DEGs) clearly separate two groups: (i) control- and 200 mM NaCl-treated plants, and (ii) 400 and 600 mM NaCl-treated plants. Additionally, although the number of total transcripts was relatively high in both plant groups, the percentage of significant DEGs was very low, ranging from 6 (200 mM NaCl/NOD+) to 314 (600 mM NaCl/KNO3+), mostly involving down-regulation. The vast majority of up-regulated genes was related to regulatory processes, reinforcing the hypothesis that some ecotypes of C. glauca have a strong stress-responsive system with an extensive set of constitutive defense mechanisms, complemented by a tight mechanism of transcriptional and post-transcriptional regulation. The results suggest that the robustness of the stress response system in C. glauca is regulated by a limited number of genes that tightly regulate detoxification and protein/enzyme stability, highlighting the complexity of the molecular interactions leading to salinity tolerance in this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA