Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955613

RESUMO

Triple-negative breast cancer (TNBC) is an immunologically heterogenous disease that lacks clinically actionable targets and is more likely to progress to metastatic disease than other types of breast cancer. Tumor ablation has been used to increase response rates to checkpoint inhibitors, which remain low for TNBC patients. We hypothesized that tumor ablation could produce an anti-tumor response without using checkpoint inhibitors if immunosuppression (i.e., Tregs, tumor acidosis) was subdued. Tumors were primed with sodium bicarbonate (200 mM p.o.) to reduce tumor acidosis and low-dose cyclophosphamide (100-200 mg/kg i.p.) to deplete regulatory T cells, as has been shown independently in previous studies. A novel injectable ablative was then used to necrose the tumor, release tumor antigens, and initiate an immune event that could create an abscopal effect. This combination of bicarbonate, cyclophosphamide, and ablation, called "BiCyclA", was tested in three syngeneic models of TNBC: E0771 (C57BL/6), 67NR (BALB/c), and 4T1-Luc (BALB/c). In E0771 and 67NR, BiCyclA therapy significantly reduced tumor growth and cured 5/7 and 6/10 mice 50 days after treatment respectively. In the metastatic 4T1-Luc tumors, for which surgery and checkpoint inhibitors fail, BiCyclA cured 5/10 mice of primary tumors and lung metastases. Notably, CD4+ and CD8+ T cells were found to be crucial for the anti-metastatic response, and cured mice were able to resist tumor rechallenge, suggesting production of immune memory. Reduction of tumor acidity and regulatory T cells with ablation is a simple yet effective therapy for local and systemic tumor control with broad applicability as it is not limited by expensive supplies.


Assuntos
Acidose , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Microambiente Tumoral
2.
Breast Cancer Res ; 17: 105, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26290094

RESUMO

INTRODUCTION: Pathologists currently diagnose breast lesions through histologic assessment, which requires fixation and tissue preparation. The diagnostic criteria used to classify breast lesions are qualitative and subjective, and inter-observer discordance has been shown to be a significant challenge in the diagnosis of selected breast lesions, particularly for borderline proliferative lesions. Thus, there is an opportunity to develop tools to rapidly visualize and quantitatively interpret breast tissue morphology for a variety of clinical applications. METHODS: Toward this end, we acquired images of freshly excised breast tissue specimens from a total of 34 patients using confocal fluorescence microscopy and proflavine as a topical stain. We developed computerized algorithms to segment and quantify nuclear and ductal parameters that characterize breast architectural features. A total of 33 parameters were evaluated and used as input to develop a decision tree model to classify benign and malignant breast tissue. Benign features were classified in tissue specimens acquired from 30 patients and malignant features were classified in specimens from 22 patients. RESULTS: The decision tree model that achieved the highest accuracy for distinguishing between benign and malignant breast features used the following parameters: standard deviation of inter-nuclear distance and number of duct lumens. The model achieved 81 % sensitivity and 93 % specificity, corresponding to an area under the curve of 0.93 and an overall accuracy of 90 %. The model classified IDC and DCIS with 92 % and 96 % accuracy, respectively. The cross-validated model achieved 75 % sensitivity and 93 % specificity and an overall accuracy of 88 %. CONCLUSIONS: These results suggest that proflavine staining and confocal fluorescence microscopy combined with image analysis strategies to segment morphological features could potentially be used to quantitatively diagnose freshly obtained breast tissue at the point of care without the need for tissue preparation.


Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Algoritmos , Meios de Contraste/administração & dosagem , Diagnóstico Diferencial , Feminino , Humanos , Microscopia Confocal/métodos , Imagem Óptica/métodos , Sensibilidade e Especificidade
3.
Sci Adv ; 10(14): eadj7540, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579004

RESUMO

Fewer than 20% of triple-negative breast cancer patients experience long-term responses to mainstay chemotherapy. Resistant tumor subpopulations use alternative metabolic pathways to escape therapy, survive, and eventually recur. Here, we show in vivo, longitudinal metabolic reprogramming in residual disease and recurrence of triple-negative breast cancer xenografts with varying sensitivities to the chemotherapeutic drug paclitaxel. Optical imaging coupled with metabolomics reported an increase in non-glucose-driven mitochondrial metabolism and an increase in intratumoral metabolic heterogeneity during regression and residual disease in resistant MDA-MB-231 tumors. Conversely, sensitive HCC-1806 tumors were primarily reliant on glucose uptake and minimal changes in metabolism or heterogeneity were observed over the tumors' therapeutic life cycles. Further, day-matched resistant HCC-1806 tumors revealed a higher reliance on mitochondrial metabolism and elevated metabolic heterogeneity compared to sensitive HCC-1806 tumors. Together, metabolic flexibility, increased reliance on mitochondrial metabolism, and increased metabolic heterogeneity are defining characteristics of persistent residual disease, features that will inform the appropriate type and timing of therapies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias de Mama Triplo Negativas , Humanos , Reprogramação Metabólica , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Antineoplásicos/farmacologia , Imagem Óptica , Linhagem Celular Tumoral
4.
Polymers (Basel) ; 16(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38611255

RESUMO

Ethyl cellulose-ethanol (ECE) is emerging as a promising formulation for ablative injections, with more controllable injection distributions than those from traditional liquid ethanol. This study evaluates the influence of salient injection parameters on forces needed for infusion, depot volume, retention, and shape in a large animal model relevant to human applications. Experiments were conducted to investigate how infusion volume (0.5 mL to 2.5 mL), ECE concentration (6% or 12%), needle gauge (22 G or 27 G), and infusion rate (10 mL/h) impacted the force of infusion into air using a load cell. These parameters, with the addition of manual infusion, were investigated to elucidate their influence on depot volume, retention, and shape (aspect ratio), measured using CT imaging, in an ex vivo swine liver model. Force during injection increased significantly for 12% compared to 6% ECE and for 27 G needles compared to 22 G. Force variability increased with higher ECE concentration and smaller needle diameter. As infusion volume increased, 12% ECE achieved superior depot volume compared to 6% ECE. For all infusion volumes, 12% ECE achieved superior retention compared to 6% ECE. Needle gauge and infusion rate had little influence on the observed depot volume or retention; however, the smaller needles resulted in higher variability in depot shape for 12% ECE. These results help us understand the multivariate nature of injection performance, informing injection protocol designs for ablations using gel ethanol and infusion, with volumes relevant to human applications.

5.
IEEE Trans Biomed Eng ; PP2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507389

RESUMO

OBJECTIVE: Early detection and treatment of cervical precancers can prevent disease progression. However, in low-resource communities with a high incidence of cervical cancer, high equipment costs and a shortage of specialists hinder preventative strategies. This manuscript presents a low-cost multiscale in vivo optical imaging system coupled with a computer-aided diagnostic system that could enable accurate, real-time diagnosis of high-grade cervical precancers. METHODS: The system combines portable colposcopy and high-resolution endomicroscopy (HRME) to acquire spatially registered widefield and microscopy videos. A multiscale imaging fusion network (MSFN) was developed to identify cervical intraepithelial neoplasia grade 2 or more severe (CIN 2+). The MSFN automatically identifies and segments the ectocervix and lesions from colposcopy images, extracts nuclear morphology features from HRME videos, and integrates the colposcopy and HRME information. RESULTS: With a threshold value set to achieve sensitivity equal to clinical impression (0.98 [p = 1.0]), the MSFN achieved a significantly higher specificity than clinical impression (0.75 vs. 0.43, p = 0.000006). CONCLUSION: Our findings show that multiscale optical imaging of the cervix allows the highly sensitive and specific detection of high-grade precancers. SIGNIFICANCE: The multiscale imaging system and MSFN could facilitate the accurate, real-time diagnosis of cervical precancers in low-resource settings.

6.
Mol Cancer Res ; 21(10): 995-1009, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37343066

RESUMO

After an initial response to chemotherapy, tumor relapse is frequent. This event is reflective of both the spatiotemporal heterogeneities of the tumor microenvironment as well as the evolutionary propensity of cancer cell populations to adapt to variable conditions. Because the cause of this adaptation could be genetic or epigenetic, studying phenotypic properties such as tumor metabolism is useful as it reflects molecular, cellular, and tissue-level dynamics. In triple-negative breast cancer (TNBC), the characteristic metabolic phenotype is a highly fermentative state. However, during treatment, the spatial and temporal dynamics of the metabolic landscape are highly unstable, with surviving populations taking on a variety of metabolic states. Thus, longitudinally imaging tumor metabolism provides a promising approach to inform therapeutic strategies, and to monitor treatment responses to understand and mitigate recurrence. Here we summarize some examples of the metabolic plasticity reported in TNBC following chemotherapy and review the current metabolic imaging techniques available in monitoring chemotherapy responses clinically and preclinically. The ensemble of imaging technologies we describe has distinct attributes that make them uniquely suited for a particular length scale, biological model, and/or features that can be captured. We focus on TNBC to highlight the potential of each of these technological advances in understanding evolution-based therapeutic resistance.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Resistencia a Medicamentos Antineoplásicos , Recidiva Local de Neoplasia , Microambiente Tumoral
7.
BME Front ; 4: 0005, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849673

RESUMO

Objective and Impact Statement: We developed a generalized computational approach to design uniform, high-intensity excitation light for low-cost, quantitative fluorescence imaging of in vitro, ex vivo, and in vivo samples with a single device. Introduction: Fluorescence imaging is a ubiquitous tool for biomedical applications. Researchers extensively modify existing systems for tissue imaging, increasing the time and effort needed for translational research and thick tissue imaging. These modifications are application-specific, requiring new designs to scale across sample types. Methods: We implemented a computational model to simulate light propagation from multiple sources. Using a global optimization algorithm and a custom cost function, we determined the spatial positioning of optical fibers to generate 2 illumination profiles. These results were implemented to image core needle biopsies, preclinical mammary tumors, or tumor-derived organoids. Samples were stained with molecular probes and imaged with uniform and nonuniform illumination. Results: Simulation results were faithfully translated to benchtop systems. We demonstrated that uniform illumination increased the reliability of intraimage analysis compared to nonuniform illumination and was concordant with traditional histological findings. The computational approach was used to optimize the illumination geometry for the purposes of imaging 3 different fluorophores through a mammary window chamber model. Illumination specifically designed for intravital tumor imaging generated higher image contrast compared to the case in which illumination originally optimized for biopsy images was used. Conclusion: We demonstrate the significance of using a computationally designed illumination for in vitro, ex vivo, and in vivo fluorescence imaging. Application-specific illumination increased the reliability of intraimage analysis and enhanced the local contrast of biological features. This approach is generalizable across light sources, biological applications, and detectors.

8.
Curr Oncol ; 30(3): 2751-2760, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36975421

RESUMO

Diffuse reflectance spectroscopy (DRS) is a powerful tool for quantifying optical and physiological tissue properties such as hemoglobin oxygen saturation and vascularity. DRS is increasingly used clinically for distinguishing cancerous lesions from normal tissue. However, its widespread clinical acceptance is still limited due to uncontrolled probe-tissue interface pressure that influences reproducibility and introduces operator-dependent results. In this clinical study, we assessed and validated a pressure-sensing and automatic self-calibration DRS in patients with suspected head and neck squamous cell carcinoma (HNSCC). The clinical study enrolled nineteen patients undergoing HNSCC surgical biopsy procedures. Patients consented to evaluation of this improved DRS system during surgery. For each patient, we obtained 10 repeated measurements on one tumor site and one distant normal location. Using a Monte Carlo-based model, we extracted the hemoglobin saturation data along with total hemoglobin content and scattering properties. A total of twelve cancer tissue samples from HNSCC patients and fourteen normal tissues were analyzed. A linear mixed effects model tested for significance between repeated measurements and compared tumor versus normal tissue. These results demonstrate that cancerous tissues have a significantly lower hemoglobin saturation compared to normal controls (p < 0.001), which may be reflective of tumor hypoxia. In addition, there were minimal changes over time upon probe placement and repeated measurement, indicating that the pressure-induced changes were minimal and repeated measurements did not differ significantly from the initial value. This study demonstrates the feasibility of conducting optical spectroscopy measurements on intact lesions prior to removal during HNSCC procedures, and established that this probe provides diagnostically-relevant physiologic information that may impact further treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Reprodutibilidade dos Testes , Análise Espectral/métodos , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Hemoglobinas
9.
Cancers (Basel) ; 14(19)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36230591

RESUMO

Ethanol ablation is a minimally invasive, cost-effective method of destroying tumor tissue through an intratumoral injection of high concentrations of cytotoxic alcohol. Ethyl-cellulose ethanol (ECE) ablation, a modified version of ethanol ablation, contains the phase-changing polysaccharide ethyl-cellulose to reduce ethanol leakage away from the tumor. Ablation produces tissue necrosis and initiates a wound healing process; however, the characteristic of the immunologic events after ECE ablation of tumors has yet to be explored. Models of triple-negative breast cancer (TNBC), which are classically immunosuppressive and difficult to treat clinically, were used to characterize the immunophenotypic changes after ECE ablation. In poorly invasive TNBC rodent models, the injury to the tumor induced by ECE increased tumor infiltrating lymphocytes (TILs) and reduced tumor growth. In a metastatic TNBC model (4T1), TILs did not increase after ECE ablation, though lung metastases were reduced. 4T1 tumors secrete high levels of granulocytic colony stimulating factor (G-CSF), which induces a suppressive milieu of granulocytic myeloid-derived suppressor cells (gMDSCs) aiding in the formation of metastases and suppression of antitumor immunity. We found that a single intratumoral injection of ECE normalized tumor-induced myeloid changes: reducing serum G-CSF and gMDSC populations. ECE also dampened the suppressive strength of gMDSC on CD4 and CD8 cell proliferation, which are crucial for anti-tumor immunity. To demonstrate the utility of these findings, ECE ablation was administered before checkpoint inhibitor (CPI) therapy in the 4T1 model and was found to significantly increase survival compared to a control of saline and CPI. Sixty days after tumor implant no primary tumors or metastatic lung lesions were found in 6/10 mice treated with CPI plus ECE, compared to 1/10 with ECE alone and 0/10 with CPI and saline.

10.
BME Front ; 2022: 9823184, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37850189

RESUMO

Objective and Impact Statement. We use deep learning models to classify cervix images-collected with a low-cost, portable Pocket colposcope-with biopsy-confirmed high-grade precancer and cancer. We boost classification performance on a screened-positive population by using a class-balanced loss and incorporating green-light colposcopy image pairs, which come at no additional cost to the provider. Introduction. Because the majority of the 300,000 annual deaths due to cervical cancer occur in countries with low- or middle-Human Development Indices, an automated classification algorithm could overcome limitations caused by the low prevalence of trained professionals and diagnostic variability in provider visual interpretations. Methods. Our dataset consists of cervical images (n=1,760) from 880 patient visits. After optimizing the network architecture and incorporating a weighted loss function, we explore two methods of incorporating green light image pairs into the network to boost the classification performance and sensitivity of our model on a test set. Results. We achieve an area under the receiver-operator characteristic curve, sensitivity, and specificity of 0.87, 75%, and 88%, respectively. The addition of the class-balanced loss and green light cervical contrast to a Resnet-18 backbone results in a 2.5 times improvement in sensitivity. Conclusion. Our methodology, which has already been tested on a prescreened population, can boost classification performance and, in the future, be coupled with Pap smear or HPV triaging, thereby broadening access to early detection of precursor lesions before they advance to cancer.

11.
NPJ Breast Cancer ; 8(1): 111, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163365

RESUMO

Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. "Fast-recurrence" tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. "Slow-recurrence" tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.

12.
Biomed Opt Express ; 13(10): 5116-5130, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36425643

RESUMO

Cervical cancer remains a leading cause of cancer death among women in low-and middle-income countries. Globally, cervical cancer prevention programs are hampered by a lack of resources, infrastructure, and personnel. We describe a multimodal mobile colposcope (MMC) designed to diagnose precancerous cervical lesions at the point-of-care without the need for biopsy. The MMC integrates two complementary imaging systems: 1) a commercially available colposcope and 2) a high speed, high-resolution, fiber-optic microendoscope (HRME). Combining these two image modalities allows, for the first time, the ability to locate suspicious cervical lesions using widefield imaging and then to obtain co-registered high-resolution images across an entire lesion. The MMC overcomes limitations of high-resolution imaging alone; widefield imaging can be used to guide the placement of the high-resolution imaging probe at clinically suspicious regions and co-registered, mosaicked high-resolution images effectively increase the field of view of high-resolution imaging. Representative data collected from patients referred for colposcopy at Barretos Cancer Hospital in Brazil, including 22,800 high resolution images and 9,900 colposcope images, illustrate the ability of the MMC to identify abnormal cervical regions, image suspicious areas with subcellular resolution, and distinguish between high-grade and low-grade dysplasia.

13.
Breast Cancer Res Treat ; 126(1): 55-62, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20390344

RESUMO

This study quantifies uptake of a fluorescent glucose analog, (2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose) (2-NBDG), in a large panel of breast cancer cells and demonstrates potential to monitor changes in glycolysis caused by anticancer and endocrine therapies. Expressions of glucose transporter (GLUT 1) and hexokinase (HK I), which phosphorylates 2-NBDG, were measured via western blot in two normal mammary epithelial and eight breast cancer cell lines of varying biological subtype. Fluorescence intensity of each cell line labeled with 100 lM 2-NBDG for 20 min or unlabeled control was quantified. A subset of cancer cells was treated with anticancer and endocrine therapies, and 2-NBDG fluorescence changes were measured. Expression of GLUT 1 was necessary for uptake of 2-NBDG, as demonstrated by lack of 2-NBDG uptake in normal human mammary epithelial cells (HMECs). GLUT 1 expression and 2-NBDG uptake was ubiquitous among all breast cancer lines. Reduction and stimulation of 2-NBDG uptake was demonstrated by perturbation with anticancer agents, lonidamine (LND), and a-cyano-hydroxycinnamate (a-Cinn), respectively. LND directly inhibits HK and significantly reduced 2-NBDG fluorescence in a subset of two breast cancer cell lines. Conversely, when cells were treated with a-Cinn, a drug used to increase glycolysis, 2-NBDG uptake was increased. Furthermore, tamoxifen (tam), a common endocrine therapy, was administered to estrogen receptor positive and negative (ER?/-) breast cells and demonstrated a decreased 2-NBDG uptake in ER? cells, reflecting a decrease in glycolysis. Results indicate that 2-NBDG uptake can be used to measure changes in glycolysis and has potential for use in early drug development.


Assuntos
4-Cloro-7-nitrobenzofurazano/análogos & derivados , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Mama/efeitos dos fármacos , Desoxiglucose/análogos & derivados , Glucose/metabolismo , Tamoxifeno/farmacologia , 4-Cloro-7-nitrobenzofurazano/farmacocinética , Antineoplásicos Hormonais/farmacologia , Western Blotting , Mama/metabolismo , Células Cultivadas , Desoxiglucose/farmacocinética , Feminino , Transportador de Glucose Tipo 1/metabolismo , Hexoquinase/metabolismo , Humanos , Fosforilação , Receptores de Estrogênio , Resultado do Tratamento
14.
Opt Express ; 19(19): 17908-24, 2011 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-21935155

RESUMO

Quantitative optical spectroscopy has the potential to provide an effective low cost, and portable solution for cervical pre-cancer screening in resource-limited communities. However, clinical studies to validate the use of this technology in resource-limited settings require low power consumption and good quality control that is minimally influenced by the operator or variable environmental conditions in the field. The goal of this study was to evaluate the effects of two sources of potential error: calibration and pressure on the extraction of absorption and scattering properties of normal cervical tissues in a resource-limited setting in Leogane, Haiti. Our results show that self-calibrated measurements improved scattering measurements through real-time correction of system drift, in addition to minimizing the time required for post-calibration. Variations in pressure (tested without the potential confounding effects of calibration error) caused local changes in vasculature and scatterer density that significantly impacted the tissue absorption and scattering properties Future spectroscopic systems intended for clinical use, particularly where operator training is not viable and environmental conditions unpredictable, should incorporate a real-time self-calibration channel and collect diffuse reflectance spectra at a consistent pressure to maximize data integrity.


Assuntos
Detecção Precoce de Câncer/instrumentação , Análise Espectral/instrumentação , Neoplasias do Colo do Útero/diagnóstico , Ácido Acético , Adulto , Calibragem , Detecção Precoce de Câncer/métodos , Detecção Precoce de Câncer/estatística & dados numéricos , Feminino , Haiti , Humanos , Pessoa de Meia-Idade , Método de Monte Carlo , Dispositivos Ópticos , Imagens de Fantasmas , Pressão , Sensibilidade e Especificidade , Análise Espectral/métodos , Análise Espectral/estatística & dados numéricos , Esfregaço Vaginal
15.
Vet Comp Oncol ; 19(3): 492-500, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33583138

RESUMO

It is difficult to retain tumoricidal doses of ethanol in large or unencapsulated tumours without causing intoxication or damaging surrounding tissue. Ethyl cellulose-ethanol ablation (ECEA) overcomes this limitation by trapping ethanol intratumorally. To evaluate the safety of ECEA and to develop a clinically feasible workflow, a single-arm pilot study was performed in cats with lingual/sublingual squamous cell carcinoma (SCC). Six cats underwent intratumoral injection of 6% ethyl cellulose in ethanol. Subjects were observed overnight. There was mild bleeding and transient hyperthermia, and injection site pain and swelling that improved with anti-inflammatory drugs. Serum ethanol was minimally elevated; the mean concentration peaked 1 hour after injection (129 +/- 15.1 nM). Cats were rechecked at weeks 1 and 2; booster treatments were given in cats (n = 3) with stable quality of life and partial response to therapy. Recheck examinations were then performed monthly. The longest tumour dimension increased in each animal (progressive disease via cRECIST); however, estimated tumour volume was reduced in 3 of 6 cats, within 1 week of ECEA. All cats were euthanized (median survival time 70 days) because of local tumour progression and/or lingual dysfunction that was likely hastened by ECEA. ECEA is not a viable treatment for feline lingual/sublingual SCC; tumour volume was effectively reduced in some cats, but the simultaneous loss of lingual function was poorly tolerated. Further optimization may make ECEA a useful option for SCC at other oral sites in the cat, and for head and neck malignancies in other species.


Assuntos
Carcinoma de Células Escamosas , Doenças do Gato , Celulose/análogos & derivados , Neoplasias de Cabeça e Pescoço , Animais , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/veterinária , Doenças do Gato/tratamento farmacológico , Gatos , Celulose/uso terapêutico , Etanol , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/veterinária , Projetos Piloto , Qualidade de Vida
16.
Artigo em Inglês | MEDLINE | ID: mdl-38495413

RESUMO

Background: Barriers that prevent adherence to cervical cancer screening programs in low-income communities include, among others, fear of and discomfort associated with the speculum during pelvic exams and difficulties in accessing health facilities. To address these barriers, a low-cost medical device, the Callascope was developed for self-imaging of the cervix. The device has a 2 MP camera connected to a smartphone and a disposable inserter with an asymmetrical tip to replace the speculum. A pilot study was performed to 1) evaluate the feasibility, acceptability, and comfort of women imaging their own cervix with the Callascope, 2) collect information to improve the design of the Callascope prototype, and 3) identify factors related with the ease of use, discomfort of the self-exam technique and quality of images. Methods: The pilot study included women (n=15) who were either current or former community-health volunteers from Ventanilla, Peru with the HOPE program. Participants completed a pre-exam survey to assess demographics and establish reproductive medical history. Each participant was provided with a self-exam kit. They were asked to perform a self-exam and take pictures of their cervix with the Callascope at home at their convenience. They submitted an audio reflection immediately post-examination via WhatsApp. A post-insertion survey to assess user experience and a focus group discussion were performed 72 hours post-insertion. Conclusions: The Callascope self-imaging of the cervix was reported to be more acceptable and comfortable than the traditional speculum-based gynecologic exam. All participants indicated that they would use the device again and recommend to a friend. Recommendations to improve the prototype design were identified: lengthen handle, overlay asymmetrical tip with softer silicon, and optimize manual focus mechanism. The Body Mass Index (BMI) was found to be a factor associated to the ease of device use and comfort.

17.
Ann Glob Health ; 87(1): 116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900616

RESUMO

Background: Cervical cancer is one of the leading causes of death among Peruvian women. Women seeking screening or treatment services experience delays in receiving screening results provided at community clinics or district hospitals, and lack sufficient resources to pay out-of-pocket to travel to the capital city of Lima for specialized treatment. Continued disparities in health outcomes and systemic barriers to accessing services suggest there are gaps between policy measures and implementation. Objectives: We aim to understand why national policies and clinical pathways that are aligned to global standards have been insufficient in improving cervical cancer screening and treatment in Peru, particularly among women who experience systemic exclusion from health services. Methods: We conducted a policy analysis based on a literature review (2005-2020), in Spanish and English, on PubMed, Global Health, Scopus, EconLit, Lilacs, and Scielo using a value-based care framework. Findings: The main barriers included unequal distribution of health infrastructure and health care workforce, and differences in access to health insurance. Additional barriers, including limited political will and support, limit efforts to prioritize the implementation of cervical cancer policies. We propose policy considersations in redesigning payment models, expanding healthcare workforce, generating costing and policy evidence, and reviewing policies for point-of-care technologies. Conclusions and Recommendations: The barriers identified in this literature review are applicable not only to cervical cancer care, but to primary health care in Peru. Systematic policy changes that address root causes of health inequities and are implemented at scale are needed to advance health reform efforts.


Assuntos
Neoplasias do Colo do Útero , Detecção Precoce de Câncer , Feminino , Reforma dos Serviços de Saúde , Desigualdades de Saúde , Humanos , Peru/epidemiologia , Políticas , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/terapia
18.
Sci Rep ; 11(1): 20700, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34667252

RESUMO

Ethanol provides a rapid, low-cost ablative solution for liver tumors with a small technological footprint but suffers from uncontrolled diffusion in target tissue, limiting treatment precision and accuracy. Incorporating the gel-forming polymer ethyl cellulose to ethanol localizes the distribution. The purpose of this study was to establish a non-invasive methodology based on CT imaging to quantitatively determine the relationship between the delivery parameters of the EC-ethanol formulation, its distribution, and the corresponding necrotic volume. The relationship of radiodensity to ethanol concentration was characterized with water-ethanol surrogates. Ex vivo EC-ethanol ablations were performed to optimize the formulation (n = 6). In vivo ablations were performed to compare the optimal EC-ethanol formulation to pure ethanol (n = 6). Ablations were monitored with CT and ethanol distribution volume was quantified. Livers were removed, sectioned and stained with NADH-diaphorase to determine the ablative extent, and a detailed time-course histological study was performed to assess the wound healing process. CT imaging of ethanol-water surrogates demonstrated the ethanol concentration-radiodensity relationship is approximately linear. A concentration of 12% EC in ethanol created the largest distribution volume, more than eight-fold that of pure ethanol, ex vivo. In vivo, 12% EC-ethanol was superior to pure ethanol, yielding a distribution volume three-fold greater and an ablation zone six-fold greater than pure ethanol. Finally, a time course histological evaluation of the liver post-ablation with 12% EC-ethanol and pure ethanol revealed that while both induce coagulative necrosis and similar tissue responses at 1-4 weeks post-ablation, 12% EC-ethanol yielded a larger ablation zone. The current study demonstrates the suitability of CT imaging to determine distribution volume and concentration of ethanol in tissue. The distribution volume of EC-ethanol is nearly equivalent to the resultant necrotic volume and increases distribution and necrosis compared to pure ethanol.


Assuntos
Celulose/análogos & derivados , Etanol/metabolismo , Fígado/metabolismo , Fígado/patologia , Animais , Ablação por Cateter/métodos , Celulose/metabolismo , Feminino , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Modelos Animais , Necrose/metabolismo , Necrose/patologia , Ratos , Ratos Endogâmicos F344
19.
Biomed Opt Express ; 12(4): 2299-2311, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33996230

RESUMO

Overexpression of heat shock protein 90 (Hsp90) on the surface of breast cancer cells makes it an attractive molecular biomarker for breast cancer diagnosis. Before a ubiquitous diagnostic method can be established, an understanding of the systematic errors in Hsp90-based imaging is essential. In this study, we investigated three factors that may influence the sensitivity of ex vivo Hsp90 molecular imaging: time-dependent tissue viability, nonspecific diffusion of an Hsp90 specific probe (HS-27), and contact-based imaging. These three factors will be important considerations when designing any diagnostic imaging strategy based on fluorescence imaging of a molecular target on tissue samples.

20.
PLoS One ; 16(1): e0234535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33507942

RESUMO

Focal tumor ablation with ethanol could provide benefits in low-resource settings because of its low overall cost, minimal imaging technology requirements, and acceptable clinical outcomes. Unfortunately, ethanol ablation is not commonly utilized because of a lack of predictability of the ablation zone, caused by inefficient retention of ethanol at the injection site. To create a predictable zone of ablation, we have developed a polymer-assisted ablation method using ethyl cellulose (EC) mixed with ethanol. EC is ethanol-soluble and water-insoluble, allowing for EC-ethanol to be injected as a liquid and precipitate into a solid, occluding the leakage of ethanol upon contact with tissue. The aims of this study were to compare the 1) safety, 2) release kinetics, 3) spatial distribution, 4) necrotic volume, and 5) overall survival of EC-ethanol to conventional ethanol ablation in a murine breast tumor model. Non-target tissue damage was monitored through localized adverse events recording, ethanol release kinetics with Raman spectroscopy, injectate distribution with in vivo imaging, target-tissue necrosis with NADH-diaphorase staining, and overall survival by proxy of tumor growth. EC-ethanol exhibited decreased localized adverse events, a slowing of the release rate of ethanol, more compact injection zones, 5-fold increase in target-tissue necrosis, and longer overall survival rates compared to the same volume of pure ethanol. A single 150 µL dose of 6% EC-ethanol achieved a similar survival probability rates to six daily 50 µL doses of pure ethanol used to simulate a slow-release of ethanol over 6 days. Taken together, these results demonstrate that EC-ethanol is safer and more effective than ethanol alone for ablating tumors.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Depressores do Sistema Nervoso Central/administração & dosagem , Etanol/administração & dosagem , Animais , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA