Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Syst Evol Microbiol ; 63(Pt 4): 1376-1382, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22843718

RESUMO

Yellow leaf disease (YLD) with phytoplasmal aetiology is a serious disease of arecanut palm in India. The present study was undertaken to characterize the 16S rRNA and secA gene sequences of the Indian arecanut YLD phytoplasma for 'Candidatus Phytoplasma' species assignment and 16Sr group/subgroup classification. Phytoplasma 16S rRNA genes were amplified using three sets of semi-nested/nested primers, 1F7/7R3-1F7/7R2, 4Fwd/3Rev-4Fwd/5Rev and P1/P7-R16F2n/R16R2, producing amplicons of 491, 1150 and 1250 bp, respectively, from diseased samples. The amplicons were cloned and sequenced. A blast search showed that the sequences had 99 % similarity with sugar cane white leaf phytoplasma (16SrXI) and Napier grass stunt phytoplasma (16SrXI). Phylogenetic analysis based on the 16S rRNA gene revealed the clustering of YLD phytoplasma with the rice yellow dwarf and Bermuda grass white leaf groups. The YLD phytoplasma F2nR2 sequence shared 97.5 % identity with that of 'Candidatus Phytoplasma oryzae' and 97.8 % identity with that of 'Candidatus Phytoplasma cynodontis'. Hence, for finer differentiation, we examined the secA gene-based phylogeny, where the YLD phytoplasma clustered with Napier grass stunt and sugar cane grassy shoot phytoplasmas, both belonging to the rice yellow dwarf group. Hence, we are assigning the Indian arecanut YLD phytoplasma as a 'Candidatus Phytoplasma oryzae'-related strain. Virtual RFLP analysis of a 1.2 kb fragment of the 16S rRNA gene (F2nR2 region) identified the Indian arecanut YLD phytoplasma as a member of 16SrXI-B subgroup. We name the phytoplasma Indian yellow leaf disease phytoplasma, to differentiate it from the Hainan YLD phytoplasma, which belongs to group 16SrI.


Assuntos
Areca/microbiologia , Filogenia , Phytoplasma/classificação , Doenças das Plantas/microbiologia , DNA Bacteriano/genética , Índia , Dados de Sequência Molecular , Phytoplasma/genética , Phytoplasma/isolamento & purificação , Folhas de Planta/microbiologia , Polimorfismo de Fragmento de Restrição , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
2.
Bioinformation ; 8(2): 65-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359437

RESUMO

Phytophthora megakarya, the causative agent of cacao black pod disease in West African countries causes an extensive loss of yield. In this study we have analyzed 4 libraries of ESTs derived from Phytophthora megakarya infected cocoa leaf and pod tissues. Totally 6379 redundant sequences were retrieved from ESTtik database and EST processing was performed using seqclean tool. Clustering and assembling using CAP3 generated 3333 non-redundant (907 contigs and 2426 singletons) sequences. The primary sequence analysis of 3333 non-redundant sequences showed that the GC percentage was 42.7 and the sequence length ranged from 101 - 2576 nucleotides. Further, functional analysis (Blast, Interproscan, Gene ontology and KEGG search) were executed and 1230 orthologous genes were annotated. Totally 272 enzymes corresponding to 114 metabolic pathways were identified. Functional annotation revealed that most of the sequences are related to molecular function, stress response and biological processes. The annotated enzymes are aldehyde dehydrogenase (E.C: 1.2.1.3), catalase (E.C: 1.11.1.6), acetyl-CoA C-acetyltransferase (E.C: 2.3.1.9), threonine ammonia-lyase (E.C: 4.3.1.19), acetolactate synthase (E.C: 2.2.1.6), O-methyltransferase (E.C: 2.1.1.68) which play an important role in amino acid biosynthesis and phenyl propanoid biosynthesis. All this information was stored in MySQL database management system to be used in future for reconstruction of biotic stress response pathway in cocoa.

3.
Bioinformation ; 7(7): 347-51, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22355235

RESUMO

Microsatellites are the most promising co-dominant markers, widely distributed throughout the genome. Identification of these repeating genomic subsets is a tedious and iterative process making computational approaches highly useful for solving this biological problem. Here 38,083 microsatellites were localized in palm sequences. A total of 2, 97,023 sequences retrieved from public domains were used for this study. The sequences were unstained using the tool Seqclean and consequently clustered using CAP3. SSRs are located in the sequences using the microsatellite search tool, MISA. Repeats were detected in 33,309 sequences and more than one SSR had appeared in 3,943 sequences. In the present study, dinucleotide repeats (49%) were found to be more abundant followed by mononucleotide (30%) and trinucleotide (19%). Also among the dinucleotides, AG/GA/TC/CT motifs (55.8%) are predominantly repeating within the palm sequences. Thus in future this study will lead to the development of specific algorithm for mining SSRs exclusively for palms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA