RESUMO
Most recognition is based on identifying features, but specialization for face recognition in primates relies on a different mechanism, termed 'holistic processing' where facial features are bound together into a gestalt which is more than the sum of its parts. Here, we test whether individual face recognition in paper wasps also involved holistic processing using a modification of the classic part-whole test in two related paper wasp species: Polistes fuscatus, which use facial patterns to individually identify conspecifics, and Polistes dominula, which lacks individual recognition. We show that P. fuscatus use holistic processing to discriminate between P. fuscatus face images but not P. dominula face images. By contrast, P. dominula do not rely on holistic processing to discriminate between conspecific or heterospecific face images. Therefore, P. fuscatus wasps have evolved holistic face processing, but this ability is highly specific and shaped by species-specific and stimulus-specific selective pressures. Convergence towards holistic face processing in distant taxa (primates, wasps) as well as divergence among closely related taxa with different recognition behaviour (P. dominula, P. fuscatus) suggests that holistic processing may be a universal adaptive strategy to facilitate expertise in face recognition.
Assuntos
Reconhecimento Facial , Vespas , Animais , Reconhecimento Psicológico , Especificidade da EspécieRESUMO
BACKGROUND: In the field of xenotransplantation, digital image analysis (DIA) is an asset to quantify heterogeneous cell infiltrates around transplanted encapsulated islets. MATERIALS AND METHODS: RGD-alginate was used to produce empty capsules or to encapsulate neonatal porcine islets (NPI) with different combinations of human pancreatic extracellular matrix (hpECM), porcine mesenchymal stem cells (pMSC) and a chitosan anti-fouling coating. Capsules were transplanted subcutaneously in rats for one month and then processed for immunohistochemistry. Immunostainings for macrophages (CD68) and lymphocytes (CD3) were quantified by DIA in two concentric regions of interest (ROI) around the capsules. DIA replicability and reproducibility were assessed by two blind operators. Repeatability was evaluated by processing the same biopsies at different time points. DIA was also compared with quantification by point counting (PC). RESULTS: Methodology validation: different sizes of ROIs were highly correlated. Intraclass correlation coefficients confirmed replicability and reproducibility. Repeatability showed a very strong correlation with CD3 stains and moderate/strong for CD68 stains. Group comparisons for CD68 IHC at each time point proved internal consistency. Point counting and DIA were strongly correlated with both CD3 and CD68. Capsule biocompatibility: Macrophage infiltration was higher around capsules containing biomaterials than around empty and RGD-alginate-NPI capsules. Lymphocytic infiltration was comparable among groups containing cells and higher than in empty capsules. CONCLUSION: We validated a semi-automated quantification methodology to assess cellular infiltrates and successfully applied it to investigate graft biocompatibility, showing that neonatal porcine islets encapsulated in alginate alone triggered less infiltration than capsules containing islets and bioactive materials.
Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Alginatos , Animais , Xenoenxertos , Ratos , Reprodutibilidade dos Testes , Suínos , Transplante HeterólogoRESUMO
Pancreatic islet transplantation is a promising treatment for type 1 diabetes, but the survival and function of transplanted islets are hindered by the loss of extracellular matrix (ECM) during islet isolation and by low oxygenation upon implantation. This study aimed to evaluate the impact of hypoxia on ECM using a cutting-edge imaging approach based on tissue clearing and 3D microscopy. Human and rat islets were cultured under normoxic (O2 21%) or hypoxic (O2 1%) conditions. Immunofluorescence staining targeting insulin, glucagon, CA9 (a hypoxia marker), ECM proteins (collagen 4, fibronectin, laminin), and E-cadherin (intercellular adhesion protein) was performed on fixed whole islets. The cleared islets were imaged using Light Sheet Fluorescence Microscopy (LSFM) and digitally analyzed. The volumetric analysis of target proteins did not show significant differences in abundance between the experimental groups. However, 3D projections revealed distinct morphological features that differentiated normoxic and hypoxic islets. Under normoxic conditions, ECM could be found throughout the islets. Hypoxic islets exhibited areas of scattered nuclei and central clusters of ECM proteins, indicating central necrosis. E-cadherin was absent in these areas. Our results, demonstrating a diminution of islets' functional mass in hypoxia, align with the functional decline observed in transplanted islets experiencing low oxygenation after grafting. This study provides a methodology combining tissue clearing, multiplex immunofluorescence, Light Sheet Fluorescence Microscopy, and digital image analysis to investigate pancreatic islet morphology. This 3D approach allowed us to highlight ECM organizational changes during hypoxia from a morphological perspective.
Assuntos
Ilhotas Pancreáticas , Humanos , Animais , Ratos , Microscopia de Fluorescência , Matriz Extracelular , Hipóxia , Proteínas da Matriz Extracelular , CaderinasRESUMO
Partial reprogramming (pulsed expression of reprogramming transcription factors) improves the function of several tissues in old mice. However, it remains largely unknown how partial reprogramming impacts the old brain. Here we use single-cell transcriptomics to systematically examine how partial reprogramming influences the subventricular zone neurogenic niche in aged mouse brains. Whole-body partial reprogramming mainly improves neuroblasts (cells committed to give rise to new neurons) in the old neurogenic niche, restoring neuroblast proportion to more youthful levels. Interestingly, targeting partial reprogramming specifically to the neurogenic niche also boosts the proportion of neuroblasts and their precursors (neural stem cells) in old mice and improves several molecular signatures of aging, suggesting that the beneficial effects of reprogramming are niche intrinsic. In old neural stem cell cultures, partial reprogramming cell autonomously restores the proportion of neuroblasts during differentiation and blunts some age-related transcriptomic changes. Importantly, partial reprogramming improves the production of new neurons in vitro and in old brains. Our work suggests that partial reprogramming could be used to rejuvenate the neurogenic niche and counter brain decline in old individuals.
Assuntos
Células-Tronco Neurais , Neurônios , Camundongos , Animais , Neurogênese/genética , Diferenciação Celular/genética , Reprogramação Celular/genéticaRESUMO
The paraventricular nucleus of the hypothalamus (PVH) is a heterogeneous collection of neurons that play important roles in modulating feeding and energy expenditure. Abnormal development or ablation of the PVH results in hyperphagic obesity and defects in energy expenditure whereas selective activation of defined PVH neuronal populations can suppress feeding and may promote energy expenditure. Here, we characterize the contribution of calcitonin receptor-expressing PVH neurons (CalcRPVH) to energy balance control. We used Cre-dependent viral tools delivered stereotaxically to the PVH of CalcR2Acre mice to activate, silence, and trace CalcRPVH neurons and determine their contribution to body weight regulation. Immunohistochemistry of fluorescently-labeled CalcRPVH neurons demonstrates that CalcRPVH neurons are largely distinct from several PVH neuronal populations involved in energy homeostasis; these neurons project to regions of the hindbrain that are implicated in energy balance control, including the nucleus of the solitary tract and the parabrachial nucleus. Acute activation of CalcRPVH neurons suppresses feeding without appreciably augmenting energy expenditure, whereas their silencing leads to obesity that may be due in part due to loss of PVH melanocortin-4 receptor signaling. These data show that CalcRPVH neurons are an essential component of energy balance neurocircuitry and their function is important for body weight maintenance. A thorough understanding of the mechanisms by which CalcRPVH neurons modulate energy balance might identify novel therapeutic targets for the treatment and prevention of obesity.