Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 109(5): 1213-1228, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34897855

RESUMO

In monoecious melon (Cucumis melo), sex is determined by the differential expression of sex determination genes (SDGs) and adoption of sex-specific transcriptional programs. Histone modifications such as H3K27me3 have been previously shown to be a hallmark associated to unisexual flower development in melon; yet, no genetic approaches have been conducted for elucidating the roles of H3K27me3 writers, readers, and erasers in this process. Here we show that melon homologs to Arabidopsis LHP1, CmLHP1A and B, redundantly control several aspects of plant development, including sex expression. Cmlhp1ab double mutants displayed an overall loss and redistribution of H3K27me3, leading to a deregulation of genes involved in hormone responses, plant architecture, and flower development. Consequently, double mutants display pleiotropic phenotypes and, interestingly, a general increase of the male:female ratio. We associated this phenomenon with a general deregulation of some hormonal response genes and a local activation of male-promoting SDGs and MADS-box transcription factors. Altogether, these results reveal a novel function for CmLHP1 proteins in maintenance of monoecy and provide novel insights into the polycomb-mediated epigenomic regulation of sex lability in plants.


Assuntos
Arabidopsis , Cucumis melo , Cucurbitaceae , Arabidopsis/genética , Cucumis melo/genética , Cucumis melo/metabolismo , Cucurbitaceae/genética , Regulação da Expressão Gênica de Plantas/genética , Histonas/metabolismo , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Plant J ; 100(6): 1118-1131, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31437321

RESUMO

Polycomb repressive complexes (PRCs) have been traditionally associated with the regulation of developmental processes in various organisms, including higher plants. However, similar to other epigenetic regulators, there is accumulating evidence for their role in the regulation of stress and immune-related pathways. In the current study we show that the PRC1 protein LHP1 is required for the repression of the MYC2 branch of jasmonic acid (JA)/ethylene (ET) pathway of immunity. Loss of LHP1 induces the reduction in H3K27me3 levels in the gene bodies of ANAC019 and ANAC055, as well as some of their targets, leading to their transcriptional upregulation. Consistently, increased expression of these two transcription factors leads to the misregulation of several of their genomic targets. The lhp1 mutant mimics the MYC2, ANAC019, and ANAC055 overexpressers in several of their phenotypes, including increased aphid resistance, abscisic acid (ABA) sensitivity and drought tolerance. In addition, like the MYC2 and ANAC overexpressers, lhp1 displays reduced salicylic acid (SA) content caused by a deregulation of ICS1 and BSMT1, as well as increased susceptibility to the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. Together, our results indicate that LHP1 regulates the expression of stress-responsive genes as well as the homeostasis and responses to the stress hormones SA and ABA. This protein emerges as a key chromatin player fine tuning the complex balance between developmental and stress-responsive processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Imunidade Vegetal/imunologia , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Animais , Afídeos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ciclopentanos , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Oxilipinas , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Proteínas do Grupo Polycomb , Pseudomonas syringae/metabolismo , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Transcriptoma
3.
J Exp Bot ; 71(17): 5129-5147, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32639553

RESUMO

In recent years, we have witnessed a significant increase in studies addressing the three-dimensional (3D) chromatin organization of the plant nucleus. Important advances in chromatin conformation capture (3C)-derived and related techniques have allowed the exploration of the nuclear topology of plants with large and complex genomes, including various crops. In addition, the increase in their resolution has permitted the depiction of chromatin compartmentalization and interactions at the gene scale. These studies have revealed the highly complex mechanisms governing plant nuclear architecture and the remarkable knowledge gaps in this field. Here we discuss the state-of-the-art in plant chromosome architecture, including our knowledge of the hierarchical organization of the genome in 3D space and regarding other nuclear components. Furthermore, we highlight the existence in plants of topologically associated domain (TAD)-like structures that display striking differences from their mammalian counterparts, proposing the concept of ICONS-intergenic condensed spacers. Similarly, we explore recent advances in the study of chromatin loops and R-loops, and their implication in the regulation of gene activity. Finally, we address the impact that polyploidization has had on the chromatin topology of modern crops, and how this is related to phenomena such as subgenome dominance and biased gene retention in these organisms.


Assuntos
Cromatina , Genoma , Animais , Núcleo Celular/genética , Cromatina/genética , Cromossomos de Plantas , Plantas/genética
4.
Genome Biol ; 23(1): 181, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038910

RESUMO

BACKGROUND: RNA-DNA hybrid (R-loop)-associated long noncoding RNAs (lncRNAs), including the Arabidopsis lncRNA AUXIN-REGULATED PROMOTER LOOP (APOLO), are emerging as important regulators of three-dimensional chromatin conformation and gene transcriptional activity. RESULTS: Here, we show that in addition to the PRC1-component LIKE HETEROCHROMATIN PROTEIN 1 (LHP1), APOLO interacts with the methylcytosine-binding protein VARIANT IN METHYLATION 1 (VIM1), a conserved homolog of the mammalian DNA methylation regulator UBIQUITIN-LIKE CONTAINING PHD AND RING FINGER DOMAINS 1 (UHRF1). The APOLO-VIM1-LHP1 complex directly regulates the transcription of the auxin biosynthesis gene YUCCA2 by dynamically determining DNA methylation and H3K27me3 deposition over its promoter during the plant thermomorphogenic response. Strikingly, we demonstrate that the lncRNA UHRF1 Protein Associated Transcript (UPAT), a direct interactor of UHRF1 in humans, can be recognized by VIM1 and LHP1 in plant cells, despite the lack of sequence homology between UPAT and APOLO. In addition, we show that increased levels of APOLO or UPAT hamper VIM1 and LHP1 binding to YUCCA2 promoter and globally alter the Arabidopsis transcriptome in a similar manner. CONCLUSIONS: Collectively, our results uncover a new mechanism in which a plant lncRNA coordinates Polycomb action and DNA methylation through the interaction with VIM1, and indicates that evolutionary unrelated lncRNAs with potentially conserved structures may exert similar functions by interacting with homolog partners.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , RNA Longo não Codificante , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA/metabolismo , Metilação de DNA , Histonas/metabolismo , Humanos , Ácidos Indolacéticos/metabolismo , Plantas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Elife ; 92020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33107825

RESUMO

Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Genoma de Planta , Histona Desmetilases com o Domínio Jumonji/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Fatores de Transcrição/genética
6.
Genome Biol ; 18(1): 131, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28683804

RESUMO

BACKGROUND: Microbial-associated molecular patterns activate several MAP kinases, which are major regulators of the innate immune response in Arabidopsis thaliana that induce large-scale changes in gene expression. Here, we determine whether microbial-associated molecular pattern-triggered gene expression involves modifications at the chromatin level. RESULTS: Histone acetylation and deacetylation are major regulators of microbial-associated molecular pattern-triggered gene expression and implicate the histone deacetylase HD2B in the reprogramming of defence gene expression and innate immunity. The MAP kinase MPK3 directly interacts with and phosphorylates HD2B, thereby regulating the intra-nuclear compartmentalization and function of the histone deacetylase. CONCLUSIONS: By studying a number of gene loci that undergo microbial-associated molecular pattern-dependent activation or repression, our data reveal a mechanistic model for how protein kinase signaling directly impacts chromatin reprogramming in plant defense.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Montagem e Desmontagem da Cromatina , Cromatina/fisiologia , Histona Desacetilases/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal , Flagelina/imunologia , Histonas/metabolismo , Imunidade Inata , Fosforilação , Estresse Fisiológico
7.
Plant Signal Behav ; 11(10): e1232224, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27611230

RESUMO

As the most recent evidence of eukaryotic cell complexity, genome architecture has astounded the scientific community and prompted a variety of technical and cognitive challenges. Several technologies have emerged and evidenced the integration of chromatin packaging and topology, epigenetic processes, and transcription for the pertinent regulation of gene expression. In the present addendum we present and discuss some of our recent research, directed toward the holistic comprehension of the processes by which plants respond to environmental and developmental stimuli. We propose that the study of genome topology and genomic interactions is essential for the understanding of the molecular mechanisms behind a phenotype. Even though our knowledge and understanding of genome architecture and hierarchy has improved substantially in the last few years -in Arabidopsis and other eukaryotes -, there is still a long way ahead in this relatively new field of study. For this, it is necessary to take advantage of the high resolution of the emerging available techniques, and perform integrative approaches with which it will be possible to depict the role of chromatin architecture in the regulation of transcription and ultimately, physiological processes.


Assuntos
Arabidopsis/genética , Cromatina/metabolismo , Arabidopsis/metabolismo , Cromatina/genética , Expressão Gênica/genética , RNA Longo não Codificante/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA