Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 237(8): 3356-3368, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670557

RESUMO

In insects, the last stage of oogenesis is the process where the chorion layers (eggshell) are synthesized and deposited on the surface of the oocytes by the follicle cells. Protein homeostasis is determined by the fine-tuning of translation and degradation pathways, and the ubiquitin-proteasome system is one of the major degradative routes in eukaryotic cells. The conjugation of ubiquitin to targeted substrates is mediated by the ordered action of E1-activating, E2-conjugating, and E3-ligase enzymes, which covalently link ubiquitin to degradation-targeted proteins delivering them to the proteolytic complex proteasome. Here, we found that the mRNAs encoding polyubiquitin (pUbq), E1, and E2 enzymes are highly expressed in the ovaries of the insect vector of Chagas Disease Rhodnius prolixus. RNAi silencing of pUbq was lethal whereas the silencing of E1 and E2 enzymes resulted in drastic decreases in oviposition and embryo viability. Eggs produced by the E1- and E2-silenced insects presented particular phenotypes of altered chorion ultrastructure observed by high-resolution scanning electron microscopy as well as readings for dityrosine cross-linking and X-ray elemental microanalysis, suggesting a disruption in the secretory routes responsible for the chorion biogenesis. In addition, the ovaries from silenced insects presented altered levels of autophagy-related genes as well as a tendency of upregulation in ER chaperones, indicating a disturbance in the general biosynthetic-secretory pathway. Altogether, we found that E1 and E2 enzymes are essential for chorion biogenesis and that their silencing triggers the modulation of autophagy genes suggesting a coordinated function of both pathways for the progression of choriogenesis.


Assuntos
Autofagia , Córion , Folículo Ovariano , Rhodnius , Animais , Autofagia/genética , Córion/patologia , Feminino , Folículo Ovariano/citologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Rhodnius/enzimologia , Rhodnius/genética , Ubiquitina/genética , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
2.
Cell Tissue Res ; 387(1): 63-74, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34713332

RESUMO

In insects, the follicle cells (FCs) give rise to a single-layered tissue of binucleated professional secretory cells that surround the oocytes during oogenesis. In the latest stage of oocyte development, the FCs rapidly synthesize and secrete the chorion (eggshell) immediately before degenerating through apoptosis. Here, we used RT-qPCR, electron microscopy, and RNAi silencing to explore the role of the main unfolded protein response (UPR) receptors IRE1 and PERK, as well as the ultrastructure dynamics of the FCs during oogenesis of the insect vector of Chagas disease Rhodnius prolixus. We found that IRE1 and PERK mRNAs are highly expressed in the ovaries of vitellogenic females. Interestingly, we observed that IRE1 and PERK, as well as different isoforms of the chaperones Bip and PDI, have their FCs gene expression levels decreased during the vitellogenesis to choriogenesis transition. Using transmission electron microscopy, we observed that the downregulation of the UPR gene expression is accompanied by dramatic changes in the FCs ultrastructure, with an 80% reduction in the mean area of the ER tubules, and circularization and enlargement of the mitochondria. Additionally, we found that parental RNAi silencing of both IRE1 and PERK resulted in minor changes in the chorion protein composition and ultrastructure, accessed by urea extraction of the chorion proteins and scanning electron microscopy, respectively, but did not impact the overall levels of oviposition and F1 embryo development.


Assuntos
Doença de Chagas/genética , Retículo Endoplasmático/metabolismo , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Vitelogênese/genética , eIF-2 Quinase/metabolismo , Animais , Doença de Chagas/fisiopatologia , Regulação para Baixo , Feminino , Insetos , Rhodnius
3.
Mol Reprod Dev ; 89(2): 86-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35020238

RESUMO

Biogenesis and consumption of the yolk are well-conserved aspects of the reproductive biology in oviparous species. Most egg-laying animals accumulate yolk proteins within the oocytes thus creating the source of nutrients and energy that will feed embryo development. Yolk accumulation drives the generation of a highly specialized oocyte cytoplasm with maternal mRNAs, ribosomes, mitochondria, and, mainly, a set of organelles collectively referred to as yolk granules (Ygs). Following fertilization, the Ygs are involved in regulated mechanisms of yolk degradation to fuel the anabolic metabolism of the growing embryo. Thus, yolk accumulation and degradation are essential processes that allow successful development in many species. Nevertheless, the molecular machinery and mechanisms dedicated to the programmed yolk mobilization throughout development are still enigmatic and remain mostly unexplored. Moreover, while the Ygs functional biology as a nutritional source for the embryo has been acknowledged, several reports have suggested that Ygs cargoes and functions go far beyond yolk storage. Evidence of the role of Ygs in gene expression, microbiota harboring, and paracrine signaling has been proposed. In this study, we summarize the current knowledge of the Ygs functional biology pointing to open questions and where further investigation is needed.


Assuntos
Desenvolvimento Embrionário , Oócitos , Animais , Biologia , Citoplasma/metabolismo , Proteínas do Ovo/metabolismo , Oócitos/metabolismo
4.
FASEB J ; 34(10): 13561-13572, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32844451

RESUMO

In insects, synthesis and deposition of the chorion (eggshell) are performed by the professional secretory follicle cells (FCs) that surround the oocytes in the course of oogenesis. Here, we found that ULK1/ATG1, an autophagy-related protein, is highly expressed in the FCs of the Chagas-Disease vector Rhodnius prolixus, and that parental RNAi silencing of ULK1/ATG1 results in oocytes with abnormal chorion ultrastructure and FCs presenting expanded rough ER membranes as well as increased expression of the ER chaperone BiP3, both indicatives of ER stress. Silencing of LC3/ATG8, another essential autophagy protein, did not replicate the ULK1/ATG1 phenotypes, whereas silencing of SEC16A, a known partner of the noncanonical ULK1/ATG1 function in the ER exit sites phenocopied the silencing of ULK1/ATG1. Our findings point to a cooperated function of ULK1/ATG1 and SEC16A in the FCs to complete choriogenesis and provide additional in vivo phenotype-based evidence to the literature of the role of ULK1/ATG1 in the ER in a professional secretory cell.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/fisiologia , Córion/fisiologia , Proteínas de Insetos/fisiologia , Folículo Ovariano/fisiologia , Rhodnius/fisiologia , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/deficiência , Doença de Chagas , Retículo Endoplasmático/fisiologia , Feminino , Proteínas de Insetos/deficiência , Chaperonas Moleculares/fisiologia
5.
Arch Insect Biochem Physiol ; 102(1): e21591, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31257641

RESUMO

In Brazil, the use of transgenic plants expressing the insect-toxic Bacillus thuringiensis endotoxin has been successfully used as pest control management since 2013 in transgenic soybean lineages against pest caterpillars such as Helicoverpa armigera. These toxins, endogenously expressed by the plants or sprayed over the crops, are ingested by the insect and bind to receptors in the midgut of these animals, resulting in disruption of digestion and lower insect survival rates. Here, we identified and characterized a membrane-associated alkaline phosphatase (ALP) in the midgut of Anticarsia gemmatalis, the main soybean defoliator pest in Brazil, and data suggested that it binds to Cry1Ac toxin in vitro. Our data showed a peak of ALP activity in homogenate samples of the midgut dissected from the 4th and 5th instars larvae. The brush border membrane vesicles obtained from the midgut of these larvae were used to purify a 60 kDa ALP, as detected by in-gel activity and in vitro biochemical characterization using pharmacological inhibitors and mass spectrometry. When Cry1Ac toxin was supplied to the diet, it was efficient in decreasing larval weight gain and survival. Indeed, in vitro incubation of Cry1Ac toxin with the purified ALP resulted in a 43% decrease in ALP specific activity and enzyme-linked immunosorbent assay showed that ALP interacts with Cry1Ac toxin in vitro, thus suggesting that ALP could function as a Cry toxin ligand. This is a first report characterizing an ALP in A. gemmatalis.


Assuntos
Fosfatase Alcalina/metabolismo , Proteínas de Bactérias/metabolismo , Endotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Larva/enzimologia , Mariposas/enzimologia , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/isolamento & purificação , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Trato Gastrointestinal/enzimologia , Trato Gastrointestinal/ultraestrutura , Proteínas Hemolisinas/toxicidade , Microvilosidades/enzimologia
6.
Biochim Biophys Acta ; 1861(7): 650-62, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27091636

RESUMO

Long-chain acyl-CoA esters are important intermediates in lipid metabolism and are synthesized from fatty acids by long-chain acyl-CoA synthetases (ACSL). The hematophagous insect Rhodnius prolixus, a vector of Chagas' disease, produces glycerolipids in the midgut after a blood meal, which are stored as triacylglycerol in the fat body and eggs. We identified twenty acyl-CoA synthetase genes in R. prolixus, two encoding ACSL isoforms (RhoprAcsl1 and RhoprAcsl2). RhoprAcsl1 transcripts increased in posterior midgut on the second day after feeding, and RhoprAcsl2 was highly transcribed on the tenth day. Both enzymes were expressed in Escherichia coli. Recombinant RhoprACSL1 and RhoprACSL2 had broad pH optima (7.5-9.5 and 6.5-9.5, respectively), were inhibited by triacsin C, and were rosiglitazone-insensitive. Both showed similar apparent Km for palmitic and oleic acid (2-6 µM), but different Km for arachidonic acid (0.5 and 6 µM for RhoprACSL1-Flag and RhoprACSL2-Flag, respectively). The knockdown of RhoprAcsl1 did not result in noticeable phenotypes. However, RhoprACSL2 deficient insects exhibited a 2.5-fold increase in triacylglycerol content in the fat body, and 90% decrease in fatty acid ß-oxidation. RhoprAcsl2 knockdown also resulted in 20% increase in lifespan, delayed digestion, 30% reduced oviposition, and 50% reduction in egg hatching. Laid eggs and hatched nymphs showed remarkable alterations in morphology. In summary, R. prolixus ACSL isoforms have distinct roles on lipid metabolism. Although RhoprACSL1 functions remain unclear, we propose that RhoprACSL2 is the main contributor for the formation of the intracellular acyl-CoA pool channeled for ß-oxidation in the fat body, and is also required for normal reproduction.


Assuntos
Coenzima A Ligases/genética , Corpo Adiposo/metabolismo , Ácidos Graxos/metabolismo , Oogênese/genética , Rhodnius/genética , Triglicerídeos/biossíntese , Sequência de Aminoácidos , Animais , Coenzima A Ligases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Proteínas de Insetos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Oxirredução , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reprodução/genética , Rhodnius/classificação , Alinhamento de Sequência , Transcrição Gênica , Triazenos , Zigoto/metabolismo
7.
Development ; 141(23): 4598-609, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25377554

RESUMO

Egg activation at fertilization is an excellent process for studying calcium regulation. Nicotinic acid adenine dinucleotide-phosphate (NAADP), a potent calcium messenger, is able to trigger calcium release, likely through two-pore channels (TPCs). Concomitantly, a family of ectocellular enzymes, the ADP-ribosyl cyclases (ARCs), has emerged as being able to change their enzymatic mode from one of nucleotide cyclization in formation of cADPR to a base-exchange reaction in the generation of NAADP. Using sea star oocytes we gain insights into the functions of endogenously expressed TPCs and ARCs in the context of the global calcium signals at fertilization. Three TPCs and one ARC were found in the sea star (Patiria miniata) that were localized in the cortex of the oocytes and eggs. PmTPCs were localized in specialized secretory organelles called cortical granules, and PmARCs accumulated in a different, unknown, set of vesicles, closely apposed to the cortical granules in the egg cortex. Using morpholino knockdown of PmTPCs and PmARC in the oocytes, we found that both calcium regulators are essential for early embryo development, and that knockdown of PmTPCs leads to aberrant construction of the fertilization envelope at fertilization and changes in cortical granule pH. The calcium signals at fertilization are not significantly altered when individual PmTPCs are silenced, but the timing and shape of the cortical flash and calcium wave are slightly changed when the expression of all three PmTPCs is perturbed concomitantly, suggesting a cooperative activity among TPC isoforms in eliciting calcium signals that may influence localized physiological activities.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Embrião não Mamífero/metabolismo , Fertilização/fisiologia , Oócitos/metabolismo , Estrelas-do-Mar/fisiologia , ADP-Ribosil Ciclase/genética , Animais , Canais de Cálcio/genética , Immunoblotting , Imuno-Histoquímica , Imunoprecipitação , Hibridização In Situ , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Morfolinos/genética , NADP/análogos & derivados , NADP/metabolismo , Estrelas-do-Mar/metabolismo
8.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(3): 324-336, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27956137

RESUMO

Glycerol-3-phosphate acyltransferases (GPAT) catalyze the initial and rate-limiting step for the de novo synthesis of triacylglycerol (TAG). Four mammalian GPAT isoforms have been identified: the mitochondria-associated GPAT1 and 2, and the endoplasmic reticulum (ER)-associated GPAT3 and 4. In the insect Rhodnius prolixus, a vector of Chagas' disease, we previously predicted a mitochondrial-like isoform (RhoprGPAT1) from genomic data. In the current study, we clone the RhoprGPAT1 coding sequence and identify an ER-associated GPAT (RhoprGPAT4) as the second isoform in the insect. RhoprGPAT1 contributes 15% of the total GPAT activity in anterior midgut, 50% in posterior midgut and fat body, and 70% in the ovary. The RhoprGpat1 gene is the predominant transcript in the midgut and fat body. To evaluate the physiological relevance of RhoprGPAT1, we generate RhoprGPAT1-deficient insects. The knockdown of RhoprGpat1 results in 50% and 65% decrease in TAG content in the posterior midgut and fat body, respectively. RhoprGpat1-deficient insects also exhibits impaired lipid droplet expansion and a 2-fold increase in fatty acid ß-oxidation rates in the fat body. We propose that the RhoprGPAT1 mitochondrial-like isoform is required to channel fatty acyl chains towards TAG synthesis and away from ß-oxidation. Such a process is crucial for the insect lipid homeostasis.


Assuntos
Corpo Adiposo/metabolismo , Ácidos Graxos/metabolismo , Glicerol-3-Fosfato O-Aciltransferase/metabolismo , Insetos/metabolismo , Rhodnius/metabolismo , Triglicerídeos/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias/metabolismo , Oxirredução
9.
Dev Biol ; 388(1): 94-102, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24368072

RESUMO

Dysferlin is a calcium-binding transmembrane protein involved in membrane fusion and membrane repair. In humans, mutations in the dysferlin gene are associated with muscular dystrophy. In this study, we isolated plasma membrane-enriched fractions from full-grown immature oocytes of the sea star, and identified dysferlin by mass spectrometry analysis. The full-length dysferlin sequence is highly conserved between human and the sea star. We learned that in the sea star Patiria miniata, dysferlin RNA and protein are expressed from oogenesis to gastrulation. Interestingly, the protein is highly enriched in the plasma membrane of oocytes. Injection of a morpholino against dysferlin leads to a decrease of endocytosis in oocytes, and to a developmental arrest during gastrulation. These results suggest that dysferlin is critical for normal endocytosis during oogenesis and for embryogenesis in the sea star and that this animal may be a useful model for studying the relationship of dysferlin structure as it relates to its function.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Endocitose/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/fisiologia , Oócitos/citologia , Animais , Cálcio/química , Proteínas de Ligação ao Cálcio/metabolismo , Membrana Celular/metabolismo , Gástrula/metabolismo , Humanos , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Ligação Proteica , Estrutura Terciária de Proteína , Proteômica , Rodaminas/química , Estrelas-do-Mar
10.
Mol Reprod Dev ; 82(7-8): 530-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25652003

RESUMO

Early applications of transmission electron microscopy (TEM) in the life sciences have contributed tremendously to our current understanding at the subcellular level. Initially limited to two-dimensional representations of three-dimensional (3D) objects, this approach has revolutionized the fields of cellular and structural biology-being instrumental for determining the fine morpho-functional characterization of most cellular structures. Electron microscopy has progressively evolved towards the development of tools that allow for the 3D characterization of different structures. This was done with the aid of a wide variety of techniques, which have become increasingly diverse and highly sophisticated. We start this review by examining the principles of 3D reconstruction of cells and tissues using classical approaches in TEM, and follow with a discussion of the modern approaches utilizing TEM as well as on new scanning electron microscopy-based techniques. 3D reconstruction techniques from serial sections and (cryo) electron-tomography are examined, and the recent applications of focused ion beam-scanning microscopes and serial-block-face techniques for the 3D reconstruction of large volumes are discussed. Alternative low-cost techniques and more accessible approaches using basic transmission or field emission scanning electron microscopes are also examined.


Assuntos
Imageamento Tridimensional/métodos , Microscopia Eletrônica/métodos
11.
J Biol Chem ; 288(41): 29323-32, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23986441

RESUMO

The heme molecule is the prosthetic group of many hemeproteins involved in essential physiological processes, such as electron transfer, transport of gases, signal transduction, and gene expression modulation. However, heme is a pro-oxidant molecule capable of propagating reactions leading to the generation of reactive oxygen species. The blood-feeding insect Rhodnius prolixus releases enormous amounts of heme during host blood digestion in the midgut lumen when it is exposed to a physiological oxidative challenge. Additionally, this organism produces a hemolymphatic heme-binding protein (RHBP) that transports heme to pericardial cells for detoxification and to growing oocytes for yolk granules and as a source of heme for embryo development. Here, we show that silencing of RHBP expression in female fat bodies reduced total RHBP circulating in the hemolymph, promoting oxidative damage to hemolymphatic proteins. Moreover, RHBP knockdown did not cause reduction in oviposition but led to the production of heme-depleted eggs (white eggs). A lack of RHBP did not alter oocyte fecundation. However, produced white eggs were nonviable. Embryo development cellularization and vitellin yolk protein degradation, processes that normally occur in early stages of embryogenesis, were compromised in white eggs. Total cytochrome c content, cytochrome c oxidase activity, citrate synthase activity, and oxygen consumption, parameters that indicate mitochondrial function, were significantly reduced in white eggs compared with normal dark red eggs. Our results showed that reduction of heme transport from females to growing oocytes by RHBP leads to embryonic mitochondrial dysfunction and impaired embryogenesis.


Assuntos
Proteínas de Transporte/genética , Hemeproteínas/genética , Mitocôndrias/metabolismo , Interferência de RNA , Rhodnius/genética , Animais , Transporte Biológico , Western Blotting , Proteínas de Transporte/metabolismo , Corpo Adiposo/embriologia , Corpo Adiposo/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Heme/metabolismo , Proteínas Ligantes de Grupo Heme , Hemeproteínas/metabolismo , Hemolinfa/metabolismo , Masculino , Microscopia Eletrônica de Varredura , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo , Oócitos/ultraestrutura , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhodnius/embriologia , Rhodnius/metabolismo , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
12.
Mol Reprod Dev ; 81(8): 679-711, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23900765

RESUMO

The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.


Assuntos
Equinodermos/embriologia , Indução Embrionária/fisiologia , Gametogênese/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células Germinativas/fisiologia , Modelos Biológicos , Transdução de Sinais/fisiologia , Animais , Divisão Celular Assimétrica/fisiologia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , RNA Helicases DEAD-box/metabolismo , Retículo Endoplasmático/metabolismo , Especificidade da Espécie
13.
Front Cell Dev Biol ; 12: 1332894, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711619

RESUMO

In nearly every species of insect, embryonic development takes place outside of the mother's body and is entirely dependent on the elements that the mother had previously stored within the eggs. It is well known that the follicle cells (FCs) synthesize the eggshell (chorion) components during the process of choriogenesis, the final step of oogenesis before fertilization. These cells have developed a specialization in the massive production of chorion proteins, which are essential for the protection and survival of the embryo. Here, we investigate the function of Sec16, a protein crucial for the endoplasmic reticulum (ER) to Golgi traffic, in the oocyte development in the insect Rhodnius prolixus. We discovered that Sec16 is strongly expressed in vitellogenic females' ovaries, particularly in the choriogenic oocyte and it is mainly associated with the FCs. Silencing of Sec16 by RNAi caused a sharp decline in oviposition rates, F1 viability, and longevity in adult females. In the FCs, genes involved in the unfolded protein response (UPR), the ubiquitin-proteasome system (UPS), and autophagy were massively upregulated, whereas the mRNAs of Rp30 and Rp45-which code for the two major chorion proteins - were downregulated as a result of Sec16 silencing, indicating general proteostasis disturbance. As a result, the outer surface ultrastructure of Sec16-silenced chorions was altered, with decreased thickness, dityrosine crosslinking, sulfur signals, and lower amounts of the chorion protein Rp30. These findings collectively demonstrate the critical role Sec16 plays in the proper functioning of the FCs, which impacts the synthesis and deposition of particular components of the chorion as well as the overall reproduction of this vector.

14.
Front Physiol ; 15: 1352766, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725570

RESUMO

Autophagy is a cellular degradation pathway mediated by highly conserved autophagy-related genes (Atgs). In our previous work, we showed that inhibiting autophagy under starvation conditions leads to significant physiological changes in the insect vector of Chagas disease Rhodnius prolixus; these changes include triacylglycerol (TAG) retention in the fat body, reduced survival and impaired locomotion and flight capabilities. Herein, because it is known that autophagy can be modulated in response to various stimuli, we further investigated the role of autophagy in the fed state, following blood feeding. Interestingly, the primary indicator for the presence of autophagosomes, the lipidated form of Atg8 (Atg8-II), displayed 20%-50% higher autophagic activation in the first 2 weeks after feeding compared to the third week when digestion was complete. Despite the elevated detection of autophagosomes, RNAi-mediated suppression of RpAtg6 and RpAtg8 did not cause substantial changes in TAG or protein levels in the fat body or the flight muscle during blood digestion. We also found that knockdown of RpAtg6 and RpAtg8 led to modest modulations in the gene expression of essential enzymes involved in lipid metabolism and did not significantly stimulate the expression of the chaperones BiP and PDI, which are the main effectors of the unfolded protein response. These findings indicate that impaired autophagy leads to slight disturbances in lipid metabolism and general cell proteostasis. However, the ability of insects to fly during forced flight until exhaustion was reduced by 60% after knockdown of RpAtg6 and RpAtg8. This change was accompanied by TAG and protein increases as well as decreased ATP levels in the fat body and flight muscle, indicating that autophagy during digestion, i.e., under fed conditions, is necessary to sustain high-performance activity.

15.
J Comp Physiol B ; 194(2): 105-119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573502

RESUMO

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.


Assuntos
Evolução Biológica , Imunidade Inata , Insetos , Mamíferos , Animais , Insetos/imunologia , Mamíferos/imunologia , Autofagia/imunologia
16.
Artigo em Inglês | MEDLINE | ID: mdl-38042331

RESUMO

Rhodnius prolixus is a hematophagous insect, which feeds on large and infrequent blood meals, and is a vector of trypanosomatids that cause Chagas disease. After feeding, lipids derived from blood meal are stored in the fat body as triacylglycerol, which is recruited under conditions of energy demand by lipolysis, where the first step is catalyzed by the Brummer lipase (Bmm), whose orthologue in mammals is the adipose triglyceride lipase (ATGL). Here, we investigated the roles of Bmm in adult Rhodnius prolixus under starvation, and after feeding. Its gene (RhoprBmm) was expressed in all the analyzed insect organs, and its transcript levels in the fat body were not altered by nutritional status. RNAi-mediated knockdown of RhoprBmm caused triacylglycerol retention in the fat body during starvation, resulting in larger lipid droplets and lower ATP levels compared to control females. The silenced females showed decreased flight capacity and locomotor activity. When RhoprBmm knockdown occurred before the blood meal and the insects were fed, the females laid fewer eggs, which collapsed and showed low hatching rates. Their hemolymph had reduced diacylglycerol content and vitellogenin concentration. The chorion (eggshell) of their eggs had no difference in hydrocarbon amounts or in dityrosine crosslinking levels compared to control eggs. However, it showed ultrastructural defects. These results demonstrated that Bmm activity is important not only to guarantee lipid mobilization to maintain energy homeostasis during starvation, but also for the production of viable eggs after a blood meal, by somehow contributing to the right formation of the egg chorion.


Assuntos
Lipase , Rhodnius , Animais , Feminino , Lipase/genética , Lipase/metabolismo , Rhodnius/genética , Casca de Ovo/metabolismo , Mobilização Lipídica , Reprodução , Triglicerídeos/metabolismo , Locomoção , Insetos Vetores , Mamíferos/metabolismo
17.
Parasit Vectors ; 17(1): 12, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184590

RESUMO

BACKGROUND: The high prevalence of metabolic syndrome in low- and middle-income countries is linked to an increase in Western diet consumption, characterized by a high intake of processed foods, which impacts the levels of blood sugar and lipids, hormones, and cytokines. Hematophagous insect vectors, such as the yellow fever mosquito Aedes aegypti, rely on blood meals for reproduction and development and are therefore exposed to the components of blood plasma. However, the impact of the alteration of blood composition due to malnutrition and metabolic conditions on mosquito biology remains understudied. METHODS: In this study, we investigated the impact of whole-blood alterations resulting from a Western-type diet on the biology of Ae. aegypti. We kept C57Bl6/J mice on a high-fat, high-sucrose (HFHS) diet for 20 weeks and followed biological parameters, including plasma insulin and lipid levels, insulin tolerance, and weight gain, to validate the development of metabolic syndrome. We further allowed Ae. aegypti mosquitoes to feed on mice and tracked how altered host blood composition modulated parameters of vector capacity. RESULTS: Our findings identified that HFHS-fed mice resulted in reduced mosquito longevity and increased fecundity upon mosquito feeding, which correlated with alteration in the gene expression profile of nutrient sensing and physiological and metabolic markers as studied up to several days after blood ingestion. CONCLUSIONS: Our study provides new insights into the overall effect of alterations of blood components on mosquito biology and its implications for the transmission of infectious diseases in conditions where the frequency of Western diet-induced metabolic syndromes is becoming more frequent. These findings highlight the importance of addressing metabolic health to further understand the spread of mosquito-borne illnesses in endemic areas.


Assuntos
Aedes , Insulinas , Síndrome Metabólica , Doenças dos Roedores , Animais , Camundongos , Longevidade , Aedes/genética , Dieta Ocidental , Mosquitos Vetores/genética , Fertilidade , Vertebrados , Expressão Gênica
18.
Evol Dev ; 15(1): 28-40, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23331915

RESUMO

Cell surface changes in an egg at fertilization are essential to begin development and for protecting the zygote. Most fertilized eggs construct a barrier around themselves by modifying their original extracellular matrix. This construction usually results from calcium-induced exocytosis of cortical granules, the contents of which in sea urchins function to form the fertilization envelope (FE), an extracellular matrix of cortical granule contents built upon a vitelline layer scaffold. Here, we examined the molecular mechanism of this process in sea stars, a close relative of the sea urchins, and analyze the evolutionary changes that likely occurred in the functionality of this structure between these two organisms. We find that the FE of sea stars is more permeable than in sea urchins, allowing diffusion of molecules in excess of 2 megadaltons. Through a proteomic and transcriptomic approach, we find that most, but not all, of the proteins present in the sea urchin envelope are present in sea stars, including SFE9, proteoliaisin, and rendezvin. The mRNAs encoding these FE proteins accumulated most densely in early oocytes, and then beginning with vitellogenesis, these mRNAs decreased in abundance to levels nearly undetectable in eggs. Antibodies to the SFE9 protein of sea stars showed that the cortical granules in sea star also accumulated most significantly in early oocytes, but different from sea urchins, they translocated to the cortex of the oocytes well before meiotic initiation. These results suggest that the preparation for cell surface changes in sea urchins has been shifted to later in oogenesis, and perhaps reflects the meiotic differences among the species-sea star oocytes are stored in prophase of meiosis and fertilized during the meiotic divisions, as in most animals, whereas sea urchins are one of the few taxons in which eggs have completed meiosis prior to fertilization.


Assuntos
Equinodermos/embriologia , Equinodermos/fisiologia , Fertilização , Regulação da Expressão Gênica no Desenvolvimento , Animais , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Biologia do Desenvolvimento , Matriz Extracelular/metabolismo , Hibridização In Situ , Espectrometria de Massas , Meiose , Oócitos/citologia , Oócitos/metabolismo , Oogênese , Filogenia , RNA Mensageiro/metabolismo , Ouriços-do-Mar/embriologia , Ouriços-do-Mar/fisiologia , Especificidade da Espécie , Zigoto
19.
Front Physiol ; 14: 1201670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469565

RESUMO

The energy stored in fatty acids is essential for several critical activities of insects, such as embryogenesis, oviposition, and flight. Rhodnius prolixus is an obligatory hematophagous hemipteran and vector of Chagas disease, and it feeds infrequently on very large blood meals. As digestion slowly occurs, lipids are synthesized and accumulate in the fat body, mainly as triacylglycerol, in lipid droplets. Between feeding bouts, proper mobilization and oxidation of stored lipids are crucial for survival, and released fatty acids are oxidized by mitochondrial ß-oxidation. Carnitine palmitoyl transferase I (CPT1) is the enzyme that catalyzes the first reaction of the carnitine shuttle, where the activated fatty acid, acyl-CoA, is converted to acyl-carnitine to be transported into the mitochondria. Here, we investigated the role of CPT1 in lipid metabolism and in resistance to starvation in Rhodnius prolixus. The expression of the CPT1 gene (RhoprCpt1) was determined in the organs of adult females on the fourth day after a blood meal, and the flight muscle showed higher expression levels than the ovary, fat body, and anterior and posterior midgut. RhoprCpt1 expression in the fat body dramatically decreased after feeding, and started to increase again 10 days later, but no changes were observed in the flight muscle. ß-oxidation rates were determined in flight muscle and fat body homogenates with the use of 3H-palmitate, and in unfed females, they were higher in the flight muscle. In the fat body, lipid oxidation activity did not show any variation before or at different days after feeding, and was not affected by the presence of etomoxir or malonyl-CoA. We used RNAi and generated RhoprCPT1-deficient insects, which surprisingly did not show a decrease in measured 3H-palmitate oxidation rates. However, the RNAi-knockdown females presented increased amounts of triacylglycerol and larger lipid droplets in the fat body, but not in the flight muscle. When subjected to starvation, these insects had a shorter lifespan. These results indicated that the inhibition of RhoprCpt1 expression compromised lipid mobilization and affected resistance to starvation.

20.
PLoS One ; 18(7): e0287488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37486954

RESUMO

Autophagy and the ubiquitin-proteasome system (UPS) are important cellular mechanisms that coordinate protein degradation essential for proteostasis. P62/SQSTM1 is a receptor cargo protein able to deliver ubiquitinated targets to the proteasome proteolytic complex and/or to the autophagosome. In the insect vector of Chagas disease, Rhodnius prolixus, previous works have shown that the knockdown of different autophagy-related genes (ATGs) and ubiquitin-conjugating enzymes resulted in abnormal oogenesis phenotypes and embryo lethality. Here, we investigate the role of the autophagy/UPS adaptor protein p62 during the oogenesis and reproduction of this vector. We found that R. prolixus presents one isoform of p62 encoded by a non-annotated gene. The predicted protein presents the domain architecture anticipated for p62: PB1 (N-term), ZZ-finger, and UBA (C-term) domains, and phylogenetic analysis showed that this pattern is highly conserved within insects. Using parental RNAi, we found that although p62 is expressed in the ovary, midgut, and fat body of adult females, systemic silencing of this gene did not result in any apparent phenotypes under in-house conditions. The insects' overall levels of blood meal digestion, lifespan, yolk protein production, oviposition, and embryo viability were not altered when compared to controls. Because it is known that autophagy and UPS can undergo compensatory mechanisms, we asked whether the silencing of p62 was triggering adaptative changes in the expression of genes of the autophagy, UPS, and the unfolded protein response (UPR) and found that only ATG1 was slightly up regulated in the ovaries of silenced females. In addition, experiments to further investigate the role of p62 in insects previously silenced for the E1-conjugating enzyme (a condition known to trigger the upregulation of p62), also did not result in any apparent phenotypes in vitellogenic females.


Assuntos
Complexo de Endopeptidases do Proteassoma , Rhodnius , Feminino , Animais , Proteína Sequestossoma-1 , Filogenia , Interferência de RNA , Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA