Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Proteome Res ; 19(11): 4567-4575, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32786890

RESUMO

The world is currently facing the COVID-19 pandemic caused by the SARS-CoV-2 virus. The pandemic is causing the death of people around the world, and public and social health measures to slow or prevent the spread of COVID-19 are being implemented with the involvement of all members of society. Research institutions are accelerating the discovery of vaccines and therapies for COVID-19. In this work, molecular docking was used to study (in silico) the interaction of 24 ligands, divided into four groups, with four SARS-CoV-2 receptors, Nsp9 replicase, main protease (Mpro), NSP15 endoribonuclease, and spike protein (S-protein) interacting with human ACE2. The results showed that the antimalarial drug Metaquine and anti-HIV antiretroviral Saquinavir interacted with all the studied receptors, indicating that they are potential candidates for multitarget drugs for COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus , Descoberta de Drogas/métodos , Simulação de Acoplamento Molecular , Pandemias , Pneumonia Viral , Antivirais/química , Antivirais/metabolismo , Betacoronavirus/química , Betacoronavirus/metabolismo , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Humanos , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/virologia , Ligação Proteica , SARS-CoV-2 , Proteínas Virais/química , Proteínas Virais/metabolismo
2.
J Biomol Struct Dyn ; 41(6): 2555-2573, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132947

RESUMO

Trypanosoma cruzi is a protozoan transmitted by the insect Triatoma infestans, popularly known as kissing bug. This protozoan causes the Chagas disease, a Neglected Tropical Disease. This study aimed to investigate, through DFT method and B3LYP hybrid functional, the physicochemical, pharmacokinetic, and pharmacodynamic properties of the alkaloids present in the leaves of the species Pilocarpus microphyllus (jaborandi) as a potential inhibitory activity on the protease sterol 14α-demethylase of T. cruzi associated with the techniques of molecular docking, molecular dynamics, MM-PBSA and ADMET predictions. The molecules of isopilosine, epiisopiloturine, epiisopilosine, and pilosine showed up the lowest binding energies by molecular docking, good human intestinal absorption, low penetration in the blood-brain barrier, antiprotozoal and anticarcinogenic activities in ADMET studies. It has been observed a better binding affinity of the sterol 14α-demethylase protease with isopilosine in molecular dynamics and MM-PBSA studies, which indicates it as a potential drug candidate for Chagas disease.Communicated by Ramaswamy H. Sarma.


Assuntos
Alcaloides , Doença de Chagas , Pilocarpus , Trypanosoma cruzi , Humanos , Pilocarpus/química , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Esteróis , Alcaloides/química , Doença de Chagas/tratamento farmacológico , Endopeptidases
3.
Chem Biol Interact ; 367: 110161, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116513

RESUMO

Diminazene aceturate (DIZE), an antiparasitic, is an ACE2 activator, and studies show that activators of this enzyme may be beneficial for COVID-19, disease caused by SARS-CoV-2. Thus, the objective was to evaluate the in silico and in vitro affinity of diminazene aceturate against molecular targets of SARS-CoV-2. 3D structures from DIZE and the proteases from SARS-CoV-2, obtained through the Protein Data Bank and Drug Database (Drubank), and processed in computer programs like AutodockTools, LigPlot, Pymol for molecular docking and visualization and GROMACS was used to perform molecular dynamics. The results demonstrate that DIZE could interact with all tested targets, and the best binding energies were obtained from the interaction of Protein S (closed conformation -7.87 kcal/mol) and Mpro (-6.23 kcal/mol), indicating that it can act both by preventing entry and viral replication. The results of molecular dynamics demonstrate that DIZE was able to promote a change in stability at the cleavage sites between S1 and S2, which could prevent binding to ACE2 and fusion with the membrane. In addition, in vitro tests confirm the in silico results showing that DIZE could inhibit the binding between the spike receptor-binding domain protein and ACE2, which could promote a reduction in the virus infection. However, tests in other experimental models with in vivo approaches are needed.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Antiparasitários , Antivirais/química , Antivirais/farmacologia , Diminazena/análogos & derivados , Humanos , Simulação de Acoplamento Molecular , Peptídeo Hidrolases , Peptidil Dipeptidase A/química , Proteína S
4.
PLoS One ; 13(6): e0198476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29944674

RESUMO

Schistosomiasis affects million people and its control is widely dependent on a single drug, praziquantel. Computational chemistry has led to the development of new tools that predict molecular properties related to pharmacological potential. We conducted a theoretical study of the imizadole alkaloids of Pilocarpus microphyllus (Rutaceae) with schistosomicidal properties. The molecules of epiisopiloturine, epiisopilosine, isopilosine, pilosine, and macaubine were evaluated using theory models (B3lyp/SDD, B3lyp/6-31+G(d,p), B3lyp/6-311++G(d,p)). Absorption, distribution, metabolization, excretion, and toxicity (ADMET) predictions were used to determine the pharmacokinetic and pharmacodynamic properties of the alkaloids. After optimization, the molecules were submitted to molecular docking calculations with the purine nucleoside phosphorylase, thioredoxin glutathione reductase, methylthioadenosine phosphorylase, arginase, uridine phosphorylase, Cathepsin B1 and histone deacetylase 8 enzymes, which are possible targets of Schistosoma mansoni. The results showed that B3lyp/6-311++G(d,p) was the optimal model to describe the properties studied. Thermodynamic analysis showed that epiisopiloturine and epiisopilosine were the most stable isomers; however, the epiisopilosine ligand achieved a superior interaction with the enzymes studied in the molecular docking experiments, which corroborated the results of previous experimental studies on schistosomiasis.


Assuntos
Alcaloides/farmacologia , Anti-Helmínticos/farmacologia , Imidazóis/farmacologia , Pilocarpus/química , 4-Butirolactona/análogos & derivados , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Alcaloides/química , Animais , Anti-Helmínticos/química , Imidazóis/química , Modelos Moleculares , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Teoria Quântica , Schistosoma mansoni/efeitos dos fármacos , Termodinâmica
5.
Front Microbiol ; 9: 1351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30018595

RESUMO

The Candida genus comprises opportunistic fungi that can become pathogenic when the immune system of the host fails. Candida albicans is the most important and prevalent species. Polyenes, fluoropyrimidines, echinocandins, and azoles are used as commercial antifungal agents to treat candidiasis. However, the presence of intrinsic and developed resistance against azole antifungals has been extensively documented among several Candida species. The advent of original and re-emergence of classical fungal diseases have occurred as a consequence of the development of the antifungal resistance phenomenon. In this way, the development of new satisfactory therapy for fungal diseases persists as a major challenge of present-day medicine. The design of original drugs from traditional medicines provides new promises in the modern clinic. The urgent need includes the development of alternative drugs that are more efficient and tolerant than those traditional already in use. The identification of new substances with potential antifungal effect at low concentrations or in combination is also a possibility. The present review briefly examines the infections caused by Candida species and focuses on the mechanisms of action associated with the traditional agents used to treat those infections, as well as the current understanding of the molecular basis of resistance development in these fungal species. In addition, this review describes some of the promising alternative molecules and/or substances that could be used as anticandidal agents, their mechanisms of action, and their use in combination with traditional drugs.

6.
Front Pharmacol ; 8: 283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588488

RESUMO

Borreria verticillata (L.) G. Mey. known vassourinha has antibacterial, antimalarial, hepatoprotective, antioxidative, analgesic, and anti-inflammatory, however, its antinociceptive action requires further studies. Aim of the study evaluated the antinociceptive activity of B. verticillata hydroalcoholic extract (EHBv) and ethyl acetate fraction (FAc) by in vivo and in silico studies. In vivo assessment included the paw edema test, writhing test, formalin test and tail flick test. Wistar rats and Swiss mice were divided into 6 groups and given the following treatments oral: 0.9% NaCl control group (CTRL), 10 mg/kg memantine (MEM), 10 mg/kg indomethacin (INDO), 500 mg/kg EHBv (EHBv 500), 25 mg/kg FAc (FAc 25) and 50 mg/kg FAc (FAc 50). EHBv, FAc 25 and 50 treatments exhibited anti-edematous and peripheral antinociceptive effects. For in silico assessment, compounds identified in FAc were subjected to molecular docking with COX-2, GluN1a and GluN2B. Ursolic acid (UA) was the compound with best affinity parameters (binding energy and inhibition constant) for COX-2, GluN1a, GluN2B, and was selected for further analysis with molecular dynamics (MD) simulations. In MD simulations, UA exhibited highly frequent interactions with residues Arg120 and Glu524 in the COX-2 active site and NMDA, whereby it might prevent COX-2 and NMDA receptor activation. Treatment with UA 10 mg/Kg showed peripheral and central antinociceptive effect. The antinociceptive effect of B. verticillata might be predominantly attributed to peripheral actions, including the participation of anti-inflammatory components. Ursolic acid is the main active component and seems to be a promising source of COX-2 inhibitors and NMDA receptor antagonists.

7.
Eur J Med Chem ; 139: 401-411, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-28810191

RESUMO

The vasoactive proline-rich oligopeptide termed BPP-BrachyNH2 (H-WPPPKVSP-NH2) induces in vitro inhibitory activity of angiotensin I-converting enzyme (ACE) in rat blood serum. In the present study, the removal of N-terminal tryptophan or C-terminal proline from BPP-BrachyNH2 was investigated in order to predict which structural components are important or required for interaction with ACE. Furthermore, the toxicological profile was assessed by in silico prediction and in vitro MTT assay. Two BPP-BrachyNH2 analogues (des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2) were synthesized, and in vitro and in silico ACE inhibitory activity and toxicological profile were assessed. The des-Trp1-BPP-BrachyNH2 and des-Pro8-BPP-BrachyNH2 were respectively 3.2- and 29.5-fold less active than the BPP-BrachyNH2-induced ACE inhibitory activity. Molecular Dynamic and Molecular Mechanics Poisson-Boltzmann Surface Area simulations (MM-PBSA) demonstrated that the ACE/BBP-BrachyNH2 complex showed lower binding and van der Wall energies than the ACE/des-Pro8-BPP-BrachyNH2 complex, therefore having better stability. The removal of the N-terminal tryptophan increased the in silico predicted toxicological effects and cytotoxicity when compared with BPP-BrachyNH2 or des-Pro8-BPP-BrachyNH2. Otherwise, des-Pro8-BPP-BrachyNH2 was 190-fold less cytotoxic than BPP-BrachyNH2. Thus, the removal of C-terminal proline residue was able to markedly decrease both the BPP-BrachyNH2-induced ACE inhibitory and cytotoxic effects assessed by in vitro and in silico approaches. In conclusion, the aminoacid sequence of BPP-BrachyNH2 is essential for its ACE inhibitory activity and associated with an acceptable toxicological profile. The perspective of the interactions of BPP-BrachyNH2 with ACE found in the present study can be used for development of drugs with differential therapeutic profile than current ACE inhibitors.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/farmacologia , Oligopeptídeos/farmacologia , Peptidil Dipeptidase A/metabolismo , Prolina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/síntese química , Inibidores da Enzima Conversora de Angiotensina/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Hemólise , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Estrutura Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Prolina/química , Ratos , Ratos Wistar , Ovinos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA