Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Geochem Health ; 45(7): 5467-5480, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37099043

RESUMO

Antimony (Sb) and arsenic (As) co-contamination occurs in Sb smelting areas and is harmful to the surrounding ecological environment. The purpose of this study is to explore the spatial distribution characteristics of Sb and As in abandoned Sb smelting area and carry out risk assessments. Soil samples were collected from the smelting area profile and background points, and groundwater samples were also collected. Samples from two geological background sections were collected to understand the geological background characteristics of Sb and As. The spatial distribution was drawn via the inverse distance weighted interpolation method. The hazard assessment was carried out by the geo-accumulation index and potential ecological hazard methods. The results showed that special high geological background value of Sb and As in study area. Sb and As co-contamination is one of the characters in soil. And the contents of Sb and As decrease as depth increases, reflecting the weak migration capacity. The spatial distribution of Sb and As is affected by slag distribution and rainfall leaching. The Sb content in groundwater was higher in the wet and normal seasons than in the dry season, slag leaching may be one of the elements. The potential ecological hazards of Sb and As are high and considerable, respectively. In abandoned smelting area with high geological background values, it is necessary to focus on the pollution abatement and protection of ecological health.


Assuntos
Arsênio , Poluentes do Solo , Antimônio/análise , Arsênio/análise , Poluentes do Solo/análise , Monitoramento Ambiental/métodos , Solo , China , Medição de Risco
2.
J Hazard Mater ; 470: 134156, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38565015

RESUMO

While antimony (Sb) and arsenic (As) co-contamination in subsurface soil systems due to the legacy of Sb smelting wastes has been documented, the role of inherent heterogeneity on pollutant migration is largely overlooked. Herein this study investigated Sb and As migration in a slag impacted, vertically stratified subsurface at an abandoned Sb smelter. A 2-dimensional flume was assembled as a lab-scale analogue of the site and subject to rainfall and stop-rain events. Reactive transport modeling was then performed by matching the experimental observations to verify the key factors and processes controlling pollutant migration. Results showed that rainfall caused Sb and As release from the shallow slag layer and promoted their downward movement. Nevertheless, the less permeable deeper layers limited physical flow and transport, which led to Sb and As accumulation at the interface. The re-adsorption of Sb and As onto iron oxides in the deeper, more acidic layers further retarded their migration. Because of the large difference between Sb and As concentrations, Sb re-adsorption was much less effective, which led to higher mobility. Our findings overall highlight the necessity of understanding the degree and impacts of physicochemical heterogeneity for risk exposure assessment and remediation of abandoned Sb smelting sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA