Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(41): e202308028, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37603459

RESUMO

Double-stranded RNAs (dsRNA) possess immense potential for biomedical applications. However, their therapeutic utility is limited by low stability and poor cellular uptake. Different strategies have been explored to enhance the stability of dsRNA, including the incorporation of modified nucleotides, and the use of diverse carrier systems. Nevertheless, these have not resulted in a broadly applicable approach thereby preventing the wide-spread application of dsRNA for therapeutic purposes. Herein, we report the design of dimeric stapled peptides based on the RNA-binding protein TAV2b. These dimers are obtained via disulfide formation and mimic the natural TAV2b assembly. They bind and stabilize dsRNA in the presence of serum, protecting it from degradation. In addition, peptide binding also promotes cellular uptake of dsRNA. Importantly, peptide dimers monomerize under reducing conditions which results in a loss of RNA binding. These findings highlight the potential of peptide-based RNA binders for the stabilization and protection of dsRNA, representing an appealing strategy towards the environment-triggered release of RNA. This can broaden the applicability of dsRNA, such as short interfering RNAs (siRNA), for therapeutic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA