Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Res ; 258: 119415, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906446

RESUMO

BACKGROUND: PM2.5, a known public health risk, is increasingly linked to intestinal disorders, however, the mechanisms of its impact are not fully understood. PURPOSE: This study aimed to explore the impact of chronic PM2.5 exposure on intestinal barrier integrity and to uncover the underlying molecular mechanisms. METHODS: C57BL/6 J mice were exposed to either concentrated ambient PM2.5 (CPM) or filtered air (FA) for six months to simulate urban pollution conditions. We evaluated intestinal barrier damage, microbial shifts, and metabolic changes through histopathology, metagenomics, and metabolomics. Analysis of the TLR signaling pathway was also conducted. RESULTS: The mean concentration of PM2.5 in the CPM exposure chamber was consistently measured at 70.9 ± 26.8 µg/m³ throughout the study period. Our findings show that chronic CPM exposure significantly compromises intestinal barrier integrity, as indicated by reduced expression of the key tight junction proteins Occludin and Tjp1/Zo-1. Metagenomic sequencing revealed significant shifts in the microbial landscape, identifying 35 differentially abundant species. Notably, there was an increase in pro-inflammatory nongastric Helicobacter species and a decrease in beneficial bacteria, such as Lactobacillus intestinalis, Lactobacillus sp. ASF360, and Eubacterium rectale. Metabolomic analysis further identified 26 significantly altered metabolites commonly associated with intestinal diseases. A strong correlation between altered bacterial species and metabolites was also observed. For example, 4 Helicobacter species all showed positive correlations with 13 metabolites, including Lactate, Bile acids, Pyruvate and Glutamate. Additionally, increased expression levels of TLR2, TLR5, Myd88, and NLRP3 proteins were noted, and their expression patterns showed a strong correlation, suggesting a possible involvement of the TLR2/5-MyD88-NLRP3 signaling pathway. CONCLUSIONS: Chronic CPM exposure induces intestinal barrier dysfunction, microbial dysbiosis, metabolic imbalance, and activation of the TLR2/5-MyD88-NLRP3 inflammasome. These findings highlight the urgent need for intervention strategies to mitigate the detrimental effects of air pollution on intestinal health and identify potential therapeutic targets.

2.
Infect Immun ; 87(10)2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31308086

RESUMO

As important players in the host defense system, commensal microbes and the microbiota influence multiple aspects of host physiology. Bordetella pertussis infection is highly contagious among humans. However, the roles of the microbiota in B. pertussis pathogenesis are poorly understood. Here, we show that antibiotic-mediated depletion of the microbiota results in increased susceptibility to B. pertussis infection during the early stage. The increased susceptibility was associated with a marked impairment of the systemic IgG, IgG2a, and IgG1 antibody responses to B. pertussis infection after antibiotic treatment. Furthermore, the microbiota impacted the short-lived plasma cell responses as well as the recall responses of memory B cells to B. pertussis infection. Finally, we found that the dysbiosis caused by antibiotic treatment affects CD4+ T cell generation and PD-1 expression on CD4+ T cells and thereby perturbs plasma cell differentiation. Our results have revealed the importance of commensal microbes in modulating host immune responses to B. pertussis infection and support the possibility of controlling the severity of B. pertussis infection in humans by manipulating the microbiota.


Assuntos
Bordetella pertussis/imunologia , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade Humoral , Simbiose/imunologia , Coqueluche/imunologia , Ampicilina/farmacologia , Animais , Antibacterianos/farmacologia , Anticorpos Antibacterianos/biossíntese , Anticorpos Antibacterianos/classificação , Bacteroidetes/classificação , Bacteroidetes/efeitos dos fármacos , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/imunologia , Bordetella pertussis/crescimento & desenvolvimento , Bordetella pertussis/patogenicidade , Disbiose/microbiologia , Disbiose/fisiopatologia , Feminino , Firmicutes/classificação , Firmicutes/efeitos dos fármacos , Firmicutes/crescimento & desenvolvimento , Firmicutes/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata , Imunoglobulina G/biossíntese , Imunoglobulina G/classificação , Metronidazol/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Neomicina/farmacologia , Proteobactérias/classificação , Proteobactérias/efeitos dos fármacos , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/imunologia , Simbiose/efeitos dos fármacos , Vancomicina/farmacologia , Coqueluche/microbiologia , Coqueluche/fisiopatologia
3.
Mol Med ; 22: 497-507, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27447731

RESUMO

Although current vaccination strategies have been successful at preventing a variety of human diseases, attempts at vaccinating against some pathogens such as AIDS and tuberculosis (TB) have been more problematic, largely in that abnormally high numbers of antigen specific CD8+ T cells are required for protection. This study assessed the effect of temporarily dampening the chemokine receptor CXCR3 and CCR5 after vaccination on host immune responses by the administration of TAK-779, a small molecule CXCR3 and CCR5 antagonists commonly used to inhibit HIV infection. Our results showed that the use of TAK-779 enhanced memory CD8+ T cell immune responses both qualitatively and quantitatively. Treatment with TAK-779 following vaccination of an influenza virus antigen resulted in enhanced memory generation with more CD8+CD127+ memory precursor and fewer terminally differentiated effector CD8+CD69+ T cells. These memory T cells were able to become IFN-γ-secreting effector cells when re-encountered the same antigen, which can further enhance the efficacy of vaccination. The mice vaccinated in the presence of TAK-779 were better protected upon influenza virus challenge than the control. These results showed that vaccination while temporarily inhibiting chemokine receptor CXCR3 and CCR5 by TAK-779 could be a promising strategy to generate large number of protective memory CD8+ T cells.

4.
Bioinform Adv ; 4(1): vbae063, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736683

RESUMO

Motivation: Ribonucleoside monophosphates (rNMPs) are the most abundant non-standard nucleotides embedded in genomic DNA. If the presence of rNMP in DNA cannot be controlled, it can lead to genome instability. The actual regulatory functions of rNMPs in DNA remain mainly unknown. Considering the association between rNMP embedment and various diseases and cancer, the phenomenon of rNMP embedment in DNA has become a prominent area of research in recent years. Results: We introduce the rNMPID database, which is the first database revealing rNMP-embedment characteristics, strand bias, and preferred incorporation patterns in the genomic DNA of samples from bacterial to human cells of different genetic backgrounds. The rNMPID database uses datasets generated by different rNMP-mapping techniques. It provides the researchers with a solid foundation to explore the features of rNMP embedded in the genomic DNA of multiple sources, and their association with cellular functions, and, in future, disease. It also significantly benefits researchers in the fields of genetics and genomics who aim to integrate their studies with the rNMP-embedment data. Availability and implementation: rNMPID is freely accessible on the web at https://www.rnmpid.org.

5.
Cancer Med ; 11(24): 4966-4978, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35578572

RESUMO

Cervical cancer (CC) ranks as the fourth most frequently diagnosed malignancy in females worldwide. Exosomes are a subclass of extracellular vesicles released by nearly all types of cells that act as cargo transport vehicles, carrying proteins, and genetic material (such as miRNAs, long noncoding RNAs, and mRNAs) derived from their parent cells may affect receiving cells and thus have emerged as key players in several biological processes, including inflammatory pathways. In this review, we concentrated on the findings of exosome investigations in CC, particularly their components. They direct the actions of CC cells by inducing surface molecules associated with various biological pathways. We summarized the current knowledge of exosomal RNAs and proteins from CC cells and discussed the feasibility of exosomes as potential biomarkers for CC. We suggest that cancer-derived exosomes promote metastasis in CC by supporting EMT, controlling the proliferation, invasion, or migration of cancer cells, as well as influencing immune escape and aiding angiogenesis. Overall, cancer-derived exosomes are critical in the progression of CC, and further studies are necessary to advance our understanding of the clinical value of exosomes in CC.


Assuntos
Exossomos , MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , Exossomos/metabolismo , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo , MicroRNAs/genética , Biomarcadores/metabolismo , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/genética
6.
Comput Struct Biotechnol J ; 20: 3133-3139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35782729

RESUMO

Interactive visualization is an effective way to promote the reproducibility of results presented in biomedical publications and to facilitate additional exploration of the reported data. However, there is a lack of convenient tools that balance reproducibility with ease of use. To address this problem, we develop BioVisReport, a lightweight solution for the rapid generation of an interactive website based on a user-defined Markdown file, which acts as a text markup language without requiring users to master complex syntax and allows them to preview the results in real-time. Interactive websites generated by the tool can help readers conveniently reproduce research findings and perform further in-depth analyses beyond those reported in the original peer-reviewed publications. Currently, BioVisReport offers 17 basic types of plots for visualizing published data. In addition, the extensibility of BioVisReport supports flexible integration of user-developed Python plugins with multiple programming languages. BioVisReport is freely available at https://biovis.report/.

7.
Front Oncol ; 12: 792055, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081550

RESUMO

Gliomas are the most frequent malignant and aggressive tumors in the central nervous system. Early and effective diagnosis of glioma using diagnostic biomarkers can prolong patients' lives and aid in the development of new personalized treatments. Therefore, a thorough and comprehensive understanding of the diagnostic biomarkers in gliomas is of great significance. To this end, we developed the integrated and web-based database GlioMarker (http://gliomarker.prophetdb.org/), the first comprehensive database for knowledge exploration of glioma diagnostic biomarkers. In GlioMarker, accurate information on 406 glioma diagnostic biomarkers from 1559 publications was manually extracted, including biomarker descriptions, clinical information, associated literature, experimental records, associated diseases, statistical indicators, etc. Importantly, we integrated many external resources to provide clinicians and researchers with the capability to further explore knowledge on these diagnostic biomarkers based on three aspects. (1) Obtain more ontology annotations of the biomarker. (2) Identify the relationship between any two or more components of diseases, drugs, genes, and variants to explore the knowledge related to precision medicine. (3) Explore the clinical application value of a specific diagnostic biomarker through online analysis of genomic and expression data from glioma cohort studies. GlioMarker provides a powerful, practical, and user-friendly web-based tool that may serve as a specialized platform for clinicians and researchers by providing rapid and comprehensive knowledge of glioma diagnostic biomarkers to subsequently facilitates high-quality research and applications.

8.
Environ Pollut ; 272: 115987, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33213950

RESUMO

Exposure to ambient fine particular matter (PM2.5) are linked to an increased risk of metabolic disorders, leading to enhanced rate of many diseases, such as inflammatory bowel disease (IBD), cardiovascular diseases, and pulmonary diseases; nevertheless, the underlying mechanisms remain poorly understood. In this study, BALB/c mice were exposed to filtered air (FA) or concentrated ambient PM2.5 (CPM) for 2 months using a versatile aerosol concentration enrichment system(VACES). We found subchronic CPM exposure caused significant lung and intestinal damage, as well as systemic inflammatory reactions. In addition, serum and BALFs (bronchoalveolar lavage fluids) metabolites involved in many metabolic pathways in the CPM exposed mice were markedly disrupted upon PM2.5 exposure. Five metabolites (glutamate, glutamine, formate, pyruvate and lactate) with excellent discriminatory power (AUC = 1, p < 0.001) were identified to predict PM2.5 exposure related toxicities. Furthermore, subchronic exposure to CPM not only significantly decreased the richness and composition of the gut microbiota, but also the lung microbiota. Strong associations were found between several gut and lung bacterial flora changes and systemic metabolic abnormalities. Our study showed exposure to ambient PM2.5 not only caused dysbiosis in the gut and lung, but also significant systemic and local metabolic alterations. Alterations in gut and lung microbiota were strongly correlated with metabolic abnormalities. Our study suggests potential roles of gut and lung microbiota in PM2.5 caused metabolic disorders.


Assuntos
Poluentes Atmosféricos , Microbioma Gastrointestinal , Microbiota , Poluentes Atmosféricos/toxicidade , Animais , Pulmão , Metaboloma , Camundongos , Camundongos Endogâmicos BALB C , Material Particulado/toxicidade
9.
Gene ; 721: 144097, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31493507

RESUMO

BACKGROUND: Polo-like kinase 1 (PLK1) is a potential prognostic marker in colorectal cancer (CRC). Nevertheless, the clinicopathological and prognostic roles of PLK1 in CRC are still undefined. Therefore, we performed a meta-analysis to investigate the clinicopathological and prognostic relevance of PLK1 expression in CRC patients. METHODS: Studies published between 2003 and 2016 were selected for the meta-analysis based on an electronic literature search (PubMed, EMBASE and Chinese databases). Studies that investigated the clinicopathological and prognostic impacts of PLK1 expression in CRC patients were included for this analysis. RESULTS: Eleven studies that enrolled 1147 CRC patients were included in our meta-analysis. The effect of PLK1 level on overall survival (OS) was reported in five studies, which included 702 patients. Ten studies investigated the clinicopathological role of PLK1 expression in CRC patients. Consequently, PLK1 overexpression was associated with poorer OS in CRC patients. Furthermore, the results revealed that higher PLK1 levels were also observed in CRC tissues compared with that of normal colorectal tissues. In addition, this meta-analysis also revealed positive correlations between PLK1 upregulation and lymph node metastasis or invasion. PLK1 overexpression was significantly correlated with advanced TNM stages and higher Dukes stages. CONCLUSION: This meta-analysis strongly supports the hypothesis that PLK1 might serve as an important factor in evaluating the biological behavior and prognosis of CRC.


Assuntos
Biomarcadores Tumorais/biossíntese , Proteínas de Ciclo Celular/biossíntese , Neoplasias Colorretais , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Biomarcadores Tumorais/genética , Proteínas de Ciclo Celular/genética , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Humanos , Metástase Linfática , Estadiamento de Neoplasias , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Taxa de Sobrevida , Quinase 1 Polo-Like
10.
Front Microbiol ; 9: 1824, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131792

RESUMO

Bantam is a conserved miRNA highly expressed in insects. We previously showed that the antisense inhibitor (antagomiR) of bantam improved the infection by baculovirus Autographa californica nucleopolyhedrovirus (AcMNPV) in Spodoptera exigua and S. litura larvae. Here, we constructed a recombinant AcMNPV (vPH-banS) expressing bantam sponge, an mRNA containing eight antisense binding sites for bantam. Infection with wild type AcMNPV (WT) or the control recombinant virus vPH resulted in a significant increase of bantam level, whereas infection with vPH-banS led to an approximately 40% reduction of bantam in both Sf9 cells and S. exigua larvae. Although, comparable production of budded virus and polyhedra were detected in vPH-banS-, vPH-, and WT-infected Sf9 cells, vPH-banS showed remarkably increased insecticidal activity in S. exigua larvae. The 50% lethal concentration and the median lethal time of vPH-banS was only 1/40 and 1/2, respectively, of both vPH and WT. Further analysis showed that the level of molting hormone 20-hydroxyecdysone (20E) was significantly higher in larvae infected with vPH-banS than those infected with vPH or WT. This was confirmed by the result that the larvae treated with bantam inhibitor also had a markedly increased 20E level. Moreover, feeding larvae with 20E increased the virus-mediated mortality, whereas feeding with juvenile hormone partially reverted the high insecticidal effect of vPH-banS. Together, our results revealed that vPH-banS infection suppresses the level of bantam, and in turn elevates level of 20E in infected insects, resulting in increased susceptibility to baculovirus infection. Our study provided a novel approach to improve a baculovirus bio-insecticide by interfering with a key homeostasis-regulating miRNA of the host.

11.
Viruses ; 8(5)2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27196923

RESUMO

The role of microRNA bantam, one of the most abundant microRNAs in Sf9 cells, was studied for its role in baculovirus infection in vitro and in vivo. The expression level of bantam was increased after AcMNPV infection in Sf9 cells and in Spodoptera litura larvae. In Sf9 cells, application of bantam inhibitor or mimic altered the expression of many virus genes, the most affected gene being lef8, gp41 and p10, the expression level of which was increased by 8, 10 and 40 times, respectively, in the presence of bantam inhibitor. Virus DNA replication was decreased in the presence of bantam mimic and increased in the presence of bantam inhibitor in a dose dependent manner. However, the production of budded virus did not change significantly. Feeding the larvae of S. litura and Spodoptera exigua with bantam antagomiR, a more stable form of the inhibitor, resulted in an abnormal larval growth and a decreased pupation rate. In S. litura, larvae died 3.5 days sooner than the control when bantam antagomiR was applied, together with AcMNPV. In infected S. exigua, larval mortality increased from 47% without antagomiR to 80% with it. The results suggest that microRNA bantam plays an important role in insect growth, as well as in baculovirus-insect interaction.


Assuntos
Baculoviridae/imunologia , Baculoviridae/fisiologia , Interações Hospedeiro-Patógeno , MicroRNAs/metabolismo , Spodoptera/imunologia , Spodoptera/virologia , Replicação Viral , Animais , Larva/imunologia , Larva/virologia , MicroRNAs/antagonistas & inibidores , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA