Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Planta ; 260(2): 34, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922515

RESUMO

MAIN CONCLUSION: This review article highlights a broader perspective of NPs and plant-root interaction by focusing on their beneficial and deleterious impacts on root system architecture (RSA). The root performs a vital function by securing itself in the soil, absorbing and transporting water and nutrients to facilitate plant growth and productivity. In dicots, the architecture of the root system (RSA) is markedly shaped by the development of the primary root and its branches, showcasing considerable adaptability in response to changes in the environment. For promoting agriculture and combating global food hunger, the use of nanoparticles (NPs) may be an exciting option, for which it is essential to understand the behaviour of plants under NPs exposure. The nature of NPs and their physicochemical characteristics play a significant role in the positive/negative response of roots and shoots. Root morphological features, such as root length, root mass and root development features, may regulated positively/negatively by different types of NPs. In addition, application of NPs may also enhance nutrient transport and soil fertility by the promotion of soil microorganisms including plant growth-promoting rhizobacteria (PGPRs) and also soil enzymes. Interestingly the interaction of nanomaterials (NMs) with rhizospheric bacteria can enhance plant development and soil health. However, some studies also suggested that the increased use of several types of engineered nanoparticles (ENPs) may disrupt the equilibrium of the soil-root interface and unsafe morphogenesis by causing the browning of roots and suppressing the growth of root and soil microbes. Thus, this review article has sought to compile a broader perspective of NPs and plant-root interaction by focusing on their beneficial or deleterious impacts on RSA.


Assuntos
Microbiota , Nanopartículas , Raízes de Plantas , Rizosfera , Microbiologia do Solo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Microbiota/efeitos dos fármacos , Minerais/metabolismo , Estresse Fisiológico , Solo/química , Desenvolvimento Vegetal/efeitos dos fármacos
2.
Physiol Plant ; 176(3): e14387, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38925551

RESUMO

Climate change is increasing the stresses on crops, resulting in reduced productivity and further augmenting global food security issues. The dynamic climatic conditions are a severe threat to the sustainability of the ecosystems. The role of technology in enhancing agricultural produce with the minimum environmental impact is hence crucial. Active molecule/Plant growth regulators (PGRs) are molecules helping plants' growth, development, and tolerance to abiotic and biotic stresses. However, their degradation, leaching in surrounding soil and ground water, as well as the assessment of the correct dose of application etc., are some of the technical disadvantages faced. They can be resolved by encapsulation/loading of PGRs on polymer matrices. Micro/nanoencapsulation is a revolutionary tool to deliver bioactive compounds in an economically affordable and environmentally friendly way. Carrier-based smart delivery systems could be a better alternative to PGRs application in the agriculture field than conventional methods (e.g., spraying). The physiochemical properties and release kinetics of PGRs from the encapsulating system are being explored. Therefore, the present review emphasizes the current status of PGRs encapsulation approach and their potential benefits to plants. This review also addressed the mechanistic action of carrier-based delivery systems for release, which may aid in developing smart delivery systems with specific tailored properties in future research.


Assuntos
Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Sistemas de Liberação de Medicamentos/métodos , Plantas/metabolismo , Portadores de Fármacos/química
3.
J Biochem Mol Toxicol ; 37(1): e23221, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36094808

RESUMO

Following its accumulation in the body, cadmium (Cd) exposure is associated with devastating effects on multiple organ system of the human body. The immune system is one of the sensitive targets for Cd-induced toxicity. Recently, studies have demonstrated a significant role of Cd in inducing epigenetic alterations. With this background, the present study was planned to study the changes in candidate microRNA (miRNA) expression associated with immune regulation in occupationally Cd-exposed workers. One hundred individuals involved in welding and metal handicraft manufacturing, while 80 apparently healthy subjects without any prior history of occupational exposure were recruited for the study. Blood Cd level was determined by atomic absorption spectrometry. Serum cytokine levels were measured using an enzyme-linked immunosorbent assay and serum miRNA expression of candidate miRNAs (miR-146a, miR-210, and miR-222) were determined by real-time polymerase chain reaction. The median Cd level (2.40 µg/L) in the occupationally exposed workers was significantly higher than the nonexposed subjects (0.90 µg/L). Among the cytokines, interleukin-4 (IL-4), and tumor necrosis factor-alpha (TNF-α) were significantly higher while IL-2 and IL-10 were significantly lower in the exposed. The expression level of miR-146a and miR-222 were significantly different between the groups with the former showing downregulation and later showing upregulation. Correlation analysis revealed a positive and negative association of miR-222 and miR-146a with blood cadmium level, IL-17 as well as TNF-α, respectively. Furthermore, the in-silico analysis revealed a significant role of the studied miRNAs in various cellular and genetic pathways. The findings of the present study demonstrate significant involvement of Cd-induced alteration in miRNAs in varied immune regulatory changes in exposed individuals.


Assuntos
Citocinas , MicroRNAs , Humanos , Citocinas/metabolismo , Cádmio/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , MicroRNAs/metabolismo , Regulação para Baixo
4.
BMC Public Health ; 23(1): 979, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37237332

RESUMO

INTRODUCTION: The healthcare system is critical to the country's overall growth, which involves the healthy development of individuals, families, and society everywhere. This systematic review focuses on providing an overall assessment of the quality of healthcare delivery during COVID-19. METHODOLOGY: The literature search was conducted from March 2020 till April 2023 utilising the databases "PubMed," "Google Scholar," and "Embase." A total of nine articles were included. Descriptive statistics was performed using Microsoft Excel. PROSPERO registration ID- CRD42022356285. RESULTS: According to the geographic location of the studies included, four studies were conducted in Asia [Malaysia(n = 1); India (Madhya Pradesh) (n = 1); Saudi Arabia(n = 1); Indonesia (Surabaya) (n = 1)], three in Europe [U.K. (n = 1); Poland (n = 1); Albania (n = 1)] and two in Africa [Ethiopia(n = 1); Tunisia (n = 1)]. Overall patient satisfaction was found highest among studies conducted in Saudi Arabia (98.1%) followed by India (Madhya Pradesh) (90.6%) and the U.K. (90%). CONCLUSION: This review concluded five different aspects of patients satisfaction level i.e. reliability, responsiveness, assurance, empathy, and tangibility. It was found that the empathy aspect had the greatest value of the five factors, i.e., 3.52 followed by Assurance with a value of 3.51.


Assuntos
COVID-19 , Humanos , Reprodutibilidade dos Testes , Ásia , Satisfação do Paciente , Etiópia
5.
Int Arch Occup Environ Health ; 96(9): 1257-1266, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37572134

RESUMO

BACKGROUND: Occupational and environmental exposure to lead (Pb) is a persistent health problem majorly in developing countries and has been implied to cause epigenetic alterations. Its effect on histone post-translational modifications is not explored in human population. MicroRNAs are epigenetic modulators reported to be differentially expressed under Pb exposure. The present study was targeted to find plausible association between the role of hsa-miR-146a and global histone (H3) acetylation in Pb-induced inflammation in occupationally exposed workers. MATERIALS AND METHODS: A total of 100 occupationally exposed individuals working in different industries were recruited for the study and divided into 2 groups based on the median Pb levels [low Pb group (Pb < 5 µg/dL) and High Pb group (Pb > 5 µg/dL)]. The Pb levels were measured in whole blood using atomic absorption spectrometry to confirm Pb exposure. Histone H3 acetylation and serum interleukin-6 (IL-6) levels were measured using colorimetric methods and enzyme-linked immunosorbent assay (ELISA), respectively. MicroRNA-146a expression was quantified using TaqMan assay. RESULTS: The median BLL of the study population was 5 µg/dL. BLL, IL-6, and Histone (H3) acetylation increased significantly with the duration of exposure. BLL level showed a significant positive correlation with IL-6 and histone H3 acetylation level. We also found that hsa-miR-146a exhibited significantly increased expression in the high Pb group compared to the low Pb group (Fold change: 2.56; P = 0.014). The linear regression model suggested that BLL has significantly predicted histone H3 acetylation, hsa-miR-146a, and IL-6 in the study subjects. CONCLUSION: The finding that hsa-miR146a was significantly upregulated in individuals with high BLL and had a significant negative correlation with serum IL-6 suggests that Pb-induced oxidative stress likely activates H3 acetylation, which then releases inflammatory cytokines like IL-6.

6.
Mikrochim Acta ; 190(10): 396, 2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37715841

RESUMO

To eliminate the potential health risks of mercury, development of stable and selective mercury sensor with high sensitivity is the need of the hour. To address this, a novel PEDOT-AA-BTZ-Au-based Hg2+ selective, hybrid electrochemical sensor has been designed by following a simple protocol for electrode fabrication. The electrode was designed by carefully optimizing the onset oxidation potential of supramolecule 2-(anthracen-9-yl)benzo[d]thiazole (AA-BTZ) and conducting polymer poly-(3,4-ethylenedioxythiophene) (PEDOT), using copolymerization approach followed by dropcasting of gold nanoparticles (AuNPs). The designed electrode offered synergistic effects thus augmenting the electrical conductivity and adsorption capacity as depicted by its porous surface morphology. The highly sensitive analytical signal was generated by sulphur pockets present in AA-BTZ and PEDOT conducting framework. This is further complemented by the selectivity offered by the soft interactions between AuNPs and Hg2+ resulting in a low detection limit of 0.60 nM. The prepared system was further utilized for sensing Hg2+ ion in real systems including lake water and cosmetic samples. Low interference from other ions and better reproducibility further established the suitability of the designed transducer system for future on-site sensing.

7.
Twin Res Hum Genet ; 25(3): 156-164, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35786423

RESUMO

Nature and nurture have always been a prerogative of evolutionary biologists. The environment's role in shaping an organism's phenotype has always intrigued us. Since the inception of humankind, twinning has existed with an unsettled parley on the contribution of nature (i.e. genetics) versus nurture (i.e. environment), which can influence the phenotypes. The study of twins measures the genetic contribution and that of the environmental influence for a particular trait, acting as a catalyst, fine-tuning the phenotypic trajectories. This is further evident because a number of human diseases show a spectrum of clinical manifestations with the same underlying molecular aberration. As of now, there is no definite way to conclude just from the genomic data the severity of a disease or even to predict who will get affected. This greatly justifies initiating a twin registry for a country as diverse and populated as India. There is an unmet need to set up a nationwide database to carefully curate the information on twins, serving as a valuable biorepository to study their overall susceptibility to disease. Establishing a twin registry is of paramount importance to harness the wealth of human information related to the biomedical, anthropological, cultural, social and economic significance.


Assuntos
Doenças em Gêmeos , Gêmeos , Doenças em Gêmeos/epidemiologia , Doenças em Gêmeos/genética , Humanos , Índia/epidemiologia , Sistema de Registros , Gêmeos/genética , Recursos Humanos
8.
Indian J Med Res ; 155(5&6): 513-517, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35859397

RESUMO

COVID-19 was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Since then, efforts were initiated to develop safe and effective vaccines. Till date, 11 vaccines have been included in the WHO's emergency use list. The emergence and spread of variant strains of SARS-CoV-2 has altered the disease transmission dynamics, thus creating a need for continuously monitoring the real-world effectiveness of various vaccines and assessing their overall impact on disease control. To achieve this goal, the Indian Council of Medical Research (ICMR) along with the Ministry of Health and Family Welfare, Government of India, took the lead to develop the India COVID-19 Vaccination Tracker by synergizing three different public health databases: National COVID-19 testing database, CoWIN vaccination database and the COVID-19 India portal. A Vaccine Data Analytics Committee (VDAC) was constituted to advise on various modalities of the proposed tracker. The VDAC reviewed the data related to COVID-19 testing, vaccination and patient outcomes available in the three databases and selected relevant data points for inclusion in the tracker, following which databases were integrated, using common identifiers, wherever feasible. Multiple data filters were applied to retrieve information of all individuals ≥18 yr who died after the acquisition of COVID-19 infection with or without vaccination, irrespective of the time between vaccination and test positivity. Vaccine effectiveness (VE) against the reduction of mortality and hospitalizations was initially assessed. As compared to the hospitalization data, mortality reporting was found to be much better in terms of correctness and completeness. Therefore, hospitalization data were not considered for analysis and presentation in the vaccine tracker. The vaccine tracker thus depicts VE against mortality, calculated by a cohort approach using person-time analysis. Incidence of COVID-19 deaths among one- and two-dose vaccine recipients was compared with that among unvaccinated groups, to estimate the rate ratios (RRs). VE was estimated as 96.6 and 97.5 per cent, with one and two doses of the vaccines, respectively, during the period of reporting. The India COVID-19 Vaccination Tracker was officially launched on September 9, 2021. The high VE against mortality, as demonstrated by the tracker, has helped aid in allaying vaccine hesitancy, augmenting and maintaining the momentum of India's COVID-19 vaccination drive.


Assuntos
COVID-19 , Vacinas , Humanos , Vacinas contra COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Teste para COVID-19
9.
Mikrochim Acta ; 189(5): 186, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397041

RESUMO

A novel electrochemical sensor, 2-(anthracen-9-yl)benzothiazole (ABT)-modified nickel ferrite reduced graphene oxide (NF@rGO) has been designed for the individual and simultaneous detection of Cd2+, Cu2+, and Hg2+ ions. Herein, NF@rGO nanocomposite, synthesized by a simple hydrothermal methodology, was hooked to ABT under easy and simple stirring conditions. Chelation of active functional groups of ABT with metal ions was augmented with higher adsorption and conductivity provided by NF@rGO. The created synergy resulted in analytical signals via selective oxidation of the ions within a potential ranging from - 1.2 to + 1.2 V vs sat. KCl. The proposed protocol exhibited a wide linear range from 0.05 to 1250 nM with excellent detection limit of 123, 54.1, and 86.6 pM via anodic stripping voltammetry for the simultaneous determination of Cd2+, Cu2+, and Hg2+ ions, respectively. Simple cost-effective synthetic approach, improved sensitivity with high selectivity, noteworthy repeatability (RSD less than 3%), and reproducibility (RSD less than 7%) equipped with successful real time monitoring (apparent recovery more than 90%) bring about a spiffing sensing platform for the detection of hazardous metal ions.


Assuntos
Mercúrio , Metais Pesados , Nanocompostos , Benzotiazóis , Cádmio , Compostos Férricos , Grafite , Íons , Níquel , Reprodutibilidade dos Testes
10.
Mikrochim Acta ; 186(11): 741, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31686225

RESUMO

A protocol is described for chemical modification of graphene oxide with a Schiff base derived from diethylenetriamine and 2-hydroxy-4-methoxybenzophenone. The base was grafted onto an indium tin oxide (ITO) film and applied to electroanalytical determination of arsenite. Successful grafting was confirmed by Fourier transform-infrared spectroscopy, spectrophotometry, field emission scanning electron microscopy and cyclic voltammetry. Secondly, the coated ITO film served as a working electrode for the stripping voltammetric determination of arsenite. The analytical signal is generated by selective oxidation of metal species via multi-donor sites present in the derivatized Schiff base. The electroanalytical protocol was optimized by investigating the effects of deposition time, working potential, frequency and amplitude of square wave anodic stripping voltammetry. The method has attractive features including (a) the usage of a non-metallic, non-toxic and cost-effective material; (b) improved sensitivity (with limit of detection as low as 156 pM) due to better adsorption of arsenite in the Schiff base pockets on the ITO, and (c) the application to the determination of arsenite in real samples. Graphical abstract Schematic representation of the fabrication of a Schiff base-functionalized graphene oxide on an indium tin oxide (SB@SiO2@GO@ITO) electrode for selective electrochemical sensing of arsenite due to adsorption on multi-donor sites.

11.
Front Med (Lausanne) ; 11: 1308288, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38873210

RESUMO

Introduction: This study investigates patient satisfaction among COVID-19 survivors in Northeast India, motivated by the unique long-term healthcare needs of survivors and the critical role of patient satisfaction in assessing and enhancing healthcare quality. By focusing on this underexplored region, the research aims to uncover insights that can guide improvements in patient-centered care and healthcare service delivery in similar contexts. Materials and methods: The study was conducted using a Simple Random Sampling technique. Data were collected through telephone interviews using a semi-structured questionnaire, including the Patient Satisfaction Questionnaire-18 (PSQ-18) for analysis. The PSQ-18 yielded seven subscale scores representing different dimensions of patient satisfaction. Statistical analysis using SPSS software was conducted to summarize socio-demographic characteristics, medical history, and patient satisfaction levels, employing both descriptive and inferential statistics. Result: The results indicated a high acceptance of COVID-19 vaccination, with the majority of participants having received both doses. Patient satisfaction with healthcare services is generally positive, particularly in aspects related to doctor-patient communication and medical care quality. However, there are notable concerns regarding the affordability and timeliness of care. Regional variations across states, as well as factors like education and income, significantly influence patient satisfaction levels. Conclusion: The study revealed generally good patient satisfaction levels in Northeast India. However, challenges in healthcare affordability and timeliness persist, influenced by regional disparities and socio-economic factors. Targeted interventions are needed to improve healthcare in the region.

12.
J Appl Genet ; 65(2): 403-413, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514586

RESUMO

tsRNAs (tRNA-derived small non-coding RNAs), including tRNA halves (tiRNAs) and tRNA fragments (tRFs), have been implicated in some viral infections, such as respiratory viral infections. However, their involvement in SARS-CoV infection is completely unknown. A comprehensive analysis was performed to determine tsRNA populations in a mouse model of SARS-CoV-infected samples containing the wild-type and attenuated viruses. Data from the Gene Expression Omnibus (GEO) dataset at NCBI (accession ID GSE90624 ) was used for this study. A count matrix was generated for the tRNAs. Differentially expressed tRNAs, followed by tsRNAs derived from each significant tRNAs at different conditions and time points between the two groups WT(SARS-CoV-MA15-WT) vs Mock and ΔE (SARS-CoV-MA15-ΔE) vs Mock were identified. Notably, significantly differentially expressed tRNAs at 2dpi but not at 4dpi. The tsRNAs originating from differentially expressed tRNAs across all the samples belonging to each condition (WT, ΔE, and Mock) were identified. Intriguingly, tRFs (tRNA-derived RNA fragments) exhibited higher levels compared to tiRNAs (tRNA-derived stress-induced RNAs) across all samples associated with WT SARS-CoV strain compared to ΔE and mock-infected samples. This discrepancy suggests a non-random formation of tsRNAs, hinting at a possible involvement of tsRNAs in SARS-CoV viral infection.


Assuntos
Coronavírus Relacionado à Síndrome Respiratória Aguda Grave , Viroses , Camundongos , Animais , RNA de Transferência/genética , RNA de Transferência/metabolismo , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética
13.
Plant Physiol Biochem ; 206: 108225, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147708

RESUMO

The increased global food insecurity due to the growing population can be addressed with precision and sustainable agricultural practices. To tackle the issues regarding food insecurity, farmers used different agrochemicals that improved plant growth and protection. Among these agrochemicals, synthetic pesticides used for plant protection in the agricultural field have various disadvantages. Conventional applications of synthetic pesticides have drawbacks such as rapid degradation, poor solubility, and non-target effects, as well as increased pesticide runoff that pollutes the environment. Nanotechnology has evolved as a potential solution to increase agricultural productivity through the development of different nanoforms of agrochemicals such as nanopesticides, nano-fabricated fertilizers, nanocapsules, nanospheres, nanogels, nanofibers, nanomicelles, and nano-based growth promoters. Encapsulation of these pesticides inside the nanomaterials has provided good biocompatibility over conventional application by inhibiting the early degradation of active ingredients (AI), increasing the uptake and adhesion of pesticides, improving the stability, solubility, and permeability of the pesticides, and decreasing the environmental impacts due to the pesticide runoff. In this review, different nanoforms of encapsulated pesticides and their smart delivery systems; nanocarriers in RNA interference (RNAi) based pesticides; environmental fate, practical implications, management of nanopesticides; and future perspectives are discussed.


Assuntos
Nanoestruturas , Praguicidas , Agricultura , Agroquímicos/farmacologia , Nanotecnologia , Plantas
14.
WIREs Mech Dis ; 15(6): e1626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37553220

RESUMO

The emergence of resistance to anti-infective agents poses a significant threat to successfully treating infections caused by bacteria. Bacteria acquire random mutations due to exposure to environmental stresses, which may increase their fitness to other selection pressures. Interestingly, for bacteria, the frequency of anti-microbial resistance (AMR) seems to be increasing in tandem with the human lifespan. Based on evidence from previous literature, we speculate that increased levels of free radicals (Reactive Oxygen Species-ROS and Reactive Nitrosative Species-RNS), elevated inflammation, and the altered tissue microenvironment in aged individuals may drive pathogen mutagenesis. If these mutations result in the hyperactivation of efflux pumps or alteration in drug target binding sites, it could confer AMR, thus rendering antibiotic therapy ineffective while leading to the selection of novel drug-resistant variants. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Infectious Diseases > Environmental Factors Metabolic Diseases > Environmental Factors.


Assuntos
Antibacterianos , Anti-Infecciosos , Humanos , Idoso , Mutação , Mutagênese , Envelhecimento/genética , Bactérias
15.
Anal Chim Acta ; 1240: 340753, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36641148

RESUMO

The current research presents the evaluation of supramolecular proficiency of the designed platform for electrocatalytic determination of pernicious food colorants, amaranth and fast green. The approach involving surface modification of glassy carbon electrode with beta cyclodextrin decorated strontium ferrite reduced graphene oxide nanocomposite (SFrGO-ßCD) to ensure fast and reversible electro-oxidation of hydroxyl groups of the colorant molecules. The synergy between SF and rGO facilitated the sensor with enhanced surface area and conductivity through faradic redox reaction. Tremendous decrease in the obtained values of peak separation potential and impedance as manifested in CV and EIS analysis, enabled by electrostatic interactions between surface functionalities of rGO and ßCD has resulted in the significant augmentation of sensitivity. The value of charge transfer coefficient, number of electrons involved, nature of electron transport process at electrode electrolyte interface during the analysis of electrochemical detection were explored through CV experiments. Food samples analysis (without spiking) utilizing screen printed electrode manifested the sensor as portable device for real time monitoring. Outstanding detection limit (0.022 nM for amaranth and 0.051 nM for fast green), excellent regenerability (Relative standard deviation less than 3%) and apparent recovery rate (above 90%) of the modified electrode presented a colossal potential for the development of sustainable and commercially competitive electrochemical sensor in food sector.


Assuntos
Corantes de Alimentos , Grafite , beta-Ciclodextrinas , Limite de Detecção , Grafite/química , beta-Ciclodextrinas/química , Corante Amaranto , Técnicas Eletroquímicas/métodos , Eletrodos
16.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242021

RESUMO

The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.

17.
OMICS ; 27(6): 273-280, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37311160

RESUMO

The Hippo signaling pathway is a master regulator of development, cell proliferation, and apoptosis in particular, and it plays an important role in tissue regeneration, controlling organ size, and cancer suppression. Dysregulation of the Hippo signaling pathway has been implicated in breast cancer, a highly prevalent cancer affecting 1 out of every 15 women worldwide. While the Hippo signaling pathway inhibitors are available, they are suboptimal, for example, due to chemoresistance, mutation, and signal leakage. Inadequate knowledge about the Hippo pathway connections and their regulators limits our ability to uncover novel molecular targets for drug development. We report here novel microRNA (miRNA)-gene and protein-protein interaction networks in the Hippo signaling pathway. We employed the GSE miRNA dataset for the present study. The GSE57897 dataset was normalized and searched for differentially expressed miRNAs, and their targets were searched using the miRWalk2.0 tool. From the upregulated miRNAs, we observed that the hsa-miR-205-5p forms the biggest cluster and targets four genes involved in the Hippo signaling pathway. Interestingly, we found a novel connection between two Hippo signaling pathway proteins, angiomotin (AMOT) and mothers against decapentaplegic homolog 4 (SMAD4). From the downregulated miRNAs, hsa-miR-16-5p, hsa-miR-7g-5p, hsa-miR-141-3p, hsa-miR-103a-3p, hsa-miR-21-5p, and hsa-miR-200c-3p, target genes were present in the pathway. We found that PTEN, EP300, and BTRC were important cancer-inhibiting proteins, form hubs, and their genes interact with downregulating miRNAs. We suggest that targeting proteins from these newly unraveled networks in the Hippo signaling pathway and further research on the interaction of hub-forming cancer-inhibiting proteins can open up new avenues for next-generation breast cancer therapeutics.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/genética , Via de Sinalização Hippo , Mapas de Interação de Proteínas , MicroRNAs/genética , Apoptose
18.
Front Public Health ; 11: 1272961, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38274537

RESUMO

Introduction: The COVID-19 pandemic has caused widespread morbidity, mortality, and socio-economic disruptions worldwide. Vaccination has proven to be a crucial strategy in controlling the spread of the virus and mitigating its impact. Objective: The study focuses on assessing the effectiveness of COVID-19 vaccination in reducing the incidence of positive cases, hospitalizations, and ICU admissions. The presented study is focused on the COVID-19 fully vaccinated population by considering the data from the first positive case reported until 20 September 2021. Methods: Using data from multiple countries, time series analysis is deployed to investigate the variations in the COVID-19 positivity rates, hospitalization rates, and ICU requirements after successful vaccination campaigns at the country scale. Results: Analysis of the COVID-19 positivity rates revealed a substantial decline in countries with high pre-vaccination rates. Within 1-3 months of vaccination campaigns, these rates decreased by 20-44%. However, certain countries experienced an increase in positivity rates with the emergence of the new Delta variant, emphasizing the importance of ongoing monitoring and adaptable vaccination strategies. Similarly, the analysis of hospitalization rates demonstrated a steady decline as vaccination drive rates rose in various countries. Within 90 days of vaccination, several countries achieved hospitalization rates below 200 per million. However, a slight increase in hospitalizations was observed in some countries after 180 days of vaccination, underscoring the need for continued vigilance. Furthermore, the ICU patient rates decreased as vaccination rates increased across most countries. Within 120 days, several countries achieved an ICU patient rate of 20 per million, highlighting the effectiveness of vaccination in preventing severe cases requiring intensive care. Conclusion: COVID-19 vaccination has proven to be very much effective in reducing the incidence of cases, hospitalizations, and ICU admissions. However, ongoing surveillance, variant monitoring, and adaptive vaccination strategies are crucial for maximizing the benefits of vaccination and effectively controlling the spread of the virus.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Pandemias , SARS-CoV-2 , Vacinação
19.
Environ Sustain (Singap) ; 5(2): 135-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37521585

RESUMO

Vultures are of immense ecological significance to forest and urban ecosystems. These birds play a major role in curbing environmental contamination through scavenging on carcasses. Prevention of spread of diseases is pivotal for public health and is an inexorable economic burden for any country. We present the crucial role vultures can play in disease mitigation and public health by regulating or decreasing the spread of zoonotic diseases. We elaborate examples from three zoonotic diseases; rabies, brucellosis and tuberculosis, which spread among dogs and cattle as well as human population. We establish the viable links in the transmission of these diseases from the infected dead and alive animals to humans and their possible exacerbation in the absence of vultures. These indirect links help formulate the case for increased interventions for disease spread and control along with conservation of these scavengers. Their role as natural and effective cleaners of the environment in the Indian health discourse is of importance because they can reduce the expenses of the government in waste management and maintenance of public health.

20.
J Indian Inst Sci ; 102(2): 671-687, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35136306

RESUMO

Antibody-dependent enhancement (ADE) is an alternative route of viral entry in the susceptible host cell. In this process, antiviral antibodies enhance the entry access of virus in the cells via interaction with the complement or Fc receptors leading to the worsening of infection. SARS-CoV-2 variants pose a general concern for the efficacy of neutralizing antibodies that may fail to neutralize infection, raising the possibility of a more severe form of COVID-19. Data from various studies on respiratory viruses raise the speculation that antibodies elicited against SARS-CoV-2 and during COVID-19 recovery could potentially exacerbate the infection through ADE at sub-neutralizing concentrations; this may contribute to disease pathogenesis. It is, therefore, of utmost importance to study the effectiveness of the anti-SARS-CoV-2 antibodies in COVID-19-infected subjects. Theoretically, ADE remains a general concern for the efficacy of antibodies elicited during infection, most notably in convalescent plasma therapy and in response to vaccines where it could be counterproductive.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA