Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(1): 656-667, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31754030

RESUMO

A major challenge facing the genetics of autism spectrum disorders (ASDs) is the large and growing number of candidate risk genes and gene variants of unknown functional significance. Here, we used Caenorhabditis elegans to systematically functionally characterize ASD-associated genes in vivo. Using our custom machine vision system, we quantified 26 phenotypes spanning morphology, locomotion, tactile sensitivity, and habituation learning in 135 strains each carrying a mutation in an ortholog of an ASD-associated gene. We identified hundreds of genotype-phenotype relationships ranging from severe developmental delays and uncoordinated movement to subtle deficits in sensory and learning behaviors. We clustered genes by similarity in phenomic profiles and used epistasis analysis to discover parallel networks centered on CHD8•chd-7 and NLGN3•nlg-1 that underlie mechanosensory hyperresponsivity and impaired habituation learning. We then leveraged our data for in vivo functional assays to gauge missense variant effect. Expression of wild-type NLG-1 in nlg-1 mutant C. elegans rescued their sensory and learning impairments. Testing the rescuing ability of conserved ASD-associated neuroligin variants revealed varied partial loss of function despite proper subcellular localization. Finally, we used CRISPR-Cas9 auxin-inducible degradation to determine that phenotypic abnormalities caused by developmental loss of NLG-1 can be reversed by adult expression. This work charts the phenotypic landscape of ASD-associated genes, offers in vivo variant functional assays, and potential therapeutic targets for ASD.


Assuntos
Transtorno do Espectro Autista/genética , Moléculas de Adesão Celular Neuronais/genética , Habituação Psicofisiológica/genética , Fenômica/métodos , Animais , Animais Geneticamente Modificados , Transtorno do Espectro Autista/fisiopatologia , Técnicas de Observação do Comportamento/métodos , Comportamento Animal/fisiologia , Caenorhabditis elegans , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Epistasia Genética , Humanos , Imunoglobulinas/genética , Locomoção/genética , Proteínas de Membrana/genética , Mutação de Sentido Incorreto , Fenótipo , Fatores de Transcrição/genética
2.
Genetics ; 218(4)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34028515

RESUMO

In Caenorhabditis elegans, the cha-1 gene encodes choline acetyltransferase (ChAT), the enzyme that synthesizes the neurotransmitter acetylcholine. We have analyzed a large number of cha-1 hypomorphic mutants, most of which are missense alleles. Some homozygous cha-1 mutants have approximately normal ChAT immunoreactivity; many other alleles lead to consistent reductions in synaptic immunostaining, although the residual protein appears to be stable. Regardless of protein levels, neuromuscular function of almost all mutants is temperature-sensitive, i.e., neuromuscular function is worse at 25° than at 14°. We show that the temperature effects are not related to acetylcholine release, but specifically to alterations in acetylcholine synthesis. This is not a temperature-dependent developmental phenotype, because animals raised at 20° to young adulthood and then shifted for 2 h to either 14° or 25° had swimming and pharyngeal pumping rates similar to animals grown and assayed at either 14° or 25°, respectively. We also show that the temperature-sensitive phenotypes are not limited to missense alleles; rather, they are a property of most or all severe cha-1 hypomorphs. We suggest that our data are consistent with a model of ChAT protein physically, but not covalently, associated with synaptic vesicles; and there is a temperature-dependent equilibrium between vesicle-associated and cytoplasmic (i.e., soluble) ChAT. Presumably, in severe cha-1 hypomorphs, increasing the temperature would promote dissociation of some of the mutant ChAT protein from synaptic vesicles, thus removing the site of acetylcholine synthesis (ChAT) from the site of vesicular acetylcholine transport. This, in turn, would decrease the rate and extent of vesicle-filling, thus increasing the severity of the behavioral deficits.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Colina O-Acetiltransferase/metabolismo , Junção Neuromuscular/metabolismo , Termotolerância , Acetilcolina/biossíntese , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Colina O-Acetiltransferase/genética , Neurônios Colinérgicos/metabolismo , Mutação de Sentido Incorreto
3.
Genetics ; 218(4)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-33914877

RESUMO

A missense mutant, unc-17(e245), which affects the Caenorhabditis elegans vesicular acetylcholine transporter UNC-17, has a severe uncoordinated phenotype, allowing efficient selection of dominant suppressors that revert this phenotype to wild-type. Such selections permitted isolation of numerous suppressors after EMS (ethyl methanesulfonate) mutagenesis, leading to demonstration of delays in mutation fixation after initial EMS treatment, as has been shown in T4 bacteriophage but not previously in eukaryotes. Three strong dominant extragenic suppressor loci have been defined, all of which act specifically on allele e245, which causes a G347R mutation in UNC-17. Two of the suppressors (sup-1 and sup-8/snb-1) have previously been shown to encode synaptic proteins able to interact directly with UNC-17. We found that the remaining suppressor, sup-2, corresponds to a mutation in erd-2.1, which encodes an endoplasmic reticulum retention protein; sup-2 causes a V186E missense mutation in transmembrane helix 7 of ERD-2.1. The same missense change introduced into the redundant paralogous gene erd-2.2 also suppressed unc-17(e245). Suppression presumably occurred by compensatory charge interactions between transmembrane helices of UNC-17 and ERD-2.1 or ERD-2.2, as previously proposed in work on suppression by SUP-1(G84E) or SUP-8(I97D)/synaptobrevin. erd-2.1(V186E) homozygotes were fully viable, but erd-2.1(V186E); erd-2.2(RNAi) exhibited synthetic lethality [like erd-2.1(RNAi); erd-2.2(RNAi)], indicating that the missense change in ERD-2.1 impairs its normal function in the secretory pathway but may allow it to adopt a novel moonlighting function as an unc-17 suppressor.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Genes Supressores , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Ligação Proteica , Sinapses/metabolismo , Mutações Sintéticas Letais , Proteínas Vesiculares de Transporte de Acetilcolina/química , Proteínas Vesiculares de Transporte de Acetilcolina/genética
4.
Nat Neurosci ; 9(5): 599-601, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16604067

RESUMO

Acetylcholine, a major excitatory neurotransmitter in Caenorhabditis elegans, is transported into synaptic vesicles by the vesicular acetylcholine transporter encoded by unc-17. The abnormal behavior of unc-17(e245) mutants, which have a glycine-to-arginine substitution in a transmembrane domain, is markedly improved by a mutant synaptobrevin with an isoleucine-to-aspartate substitution in its transmembrane domain. These results suggest an association of vesicular soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (SNARE) components with vesicular neurotransmitter transporters.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas R-SNARE/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Animais , Arginina/genética , Comportamento Animal , Caenorhabditis elegans , Imunofluorescência/métodos , Isoleucina/genética , Dados de Sequência Molecular , Movimento/fisiologia , Mutação/fisiologia
5.
Genetics ; 215(3): 665-681, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32444379

RESUMO

We explore here the cis-regulatory logic that dictates gene expression in specific cell types in the nervous system. We focus on a set of eight genes involved in the synthesis, transport, and breakdown of three neurotransmitter systems: acetylcholine (unc-17/VAChT, cha-1/ChAT, cho-1/ChT, and ace-2/AChE), glutamate (eat-4/VGluT), and γ-aminobutyric acid (unc-25/GAD, unc-46/LAMP, and unc-47/VGAT). These genes are specifically expressed in defined subsets of cells in the nervous system. Through transgenic reporter gene assays, we find that the cellular specificity of expression of all of these genes is controlled in a modular manner through distinct cis-regulatory elements, corroborating the previously inferred piecemeal nature of specification of neurotransmitter identity. This modularity provides the mechanistic basis for the phenomenon of "phenotypic convergence," in which distinct regulatory pathways can generate similar phenotypic outcomes (i.e., the acquisition of a specific neurotransmitter identity) in different neuron classes. We also identify cases of enhancer pleiotropy, in which the same cis-regulatory element is utilized to control gene expression in distinct neuron types. We engineered a cis-regulatory allele of the vesicular acetylcholine transporter, unc-17/VAChT, to assess the functional contribution of a "shadowed" enhancer. We observed a selective loss of unc-17/VAChT expression in one cholinergic pharyngeal pacemaker motor neuron class and a behavioral phenotype that matches microsurgical removal of this neuron. Our analysis illustrates the value of understanding cis-regulatory information to manipulate gene expression and control animal behavior.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Neurônios/metabolismo , Neurotransmissores/metabolismo , Sequências Reguladoras de Ácido Nucleico , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Pleiotropia Genética , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/classificação , Neurotransmissores/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Proteínas Vesiculares de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
6.
Mol Biol Cell ; 17(7): 3021-30, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16641366

RESUMO

Sodium-dependent neurotransmitter transporters participate in the clearance and/or recycling of neurotransmitters from synaptic clefts. The snf-11 gene in Caenorhabditis elegans encodes a protein of high similarity to mammalian GABA transporters (GATs). We show here that snf-11 encodes a functional GABA transporter; SNF-11-mediated GABA transport is Na+ and Cl- dependent, has an EC50 value of 168 microM, and is blocked by the GAT1 inhibitor SKF89976A. The SNF-11 protein is expressed in seven GABAergic neurons, several additional neurons in the head and retrovesicular ganglion, and three groups of muscle cells. Therefore, all GABAergic synapses are associated with either presynaptic or postsynaptic (or both) expression of SNF-11. Although a snf-11 null mutation has no obvious effects on GABAergic behaviors, it leads to resistance to inhibitors of acetylcholinesterase. In vivo, a snf-11 null mutation blocks GABA uptake in at least a subset of GABAergic cells; in a cell culture system, all GABA uptake is abolished by the snf-11 mutation. We conclude that GABA transport activity is not essential for normal GABAergic function in C. elegans and that the localization of SNF-11 is consistent with a GABA clearance function rather than recycling.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/fisiologia , Genes de Helmintos/fisiologia , Sinapses/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , GABAérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de GABA/análise , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Mutação , Ácidos Nipecóticos/farmacologia , Fenótipo , Filogenia , Sódio/metabolismo , Transmissão Sináptica
7.
J Comp Neurol ; 506(3): 398-408, 2008 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-18041778

RESUMO

The neurotransmitter acetylcholine (ACh) is specifically synthesized by the enzyme choline acetyltransferase (ChAT). Subsequently, it is loaded into synaptic vesicles by a specific vesicular acetylcholine transporter (VAChT). We have generated antibodies that recognize ChAT or VAChT in a model organism, the nematode Caenorhabditis elegans, in order to examine the subcellular and cellular distributions of these cholinergic proteins. ChAT and VAChT are found in the same neurons, including more than one-third of the 302 total neurons present in the adult hermaphrodite. VAChT is found in synaptic regions, whereas ChAT appears to exist in two forms in neurons, a synapse-enriched form and a more evenly distributed possibly cytosolic form. We have used antibodies to identify the cholinergic neurons in the body of larval and adult hermaphrodites. All of the classes of putative excitatory motor neurons in the ventral nerve cord appear to be cholinergic: the DA and DB neurons in the first larval stage and the AS, DA, DB, VA, VB, and VC neurons in the adult. In addition, several interneurons with somas in the tail and processes in the tail or body are cholinergic; sensory neurons are generally not cholinergic. Description of the normal pattern of cholinergic proteins and neurons will improve our understanding of the role of cholinergic neurons in the behavior and development of this model organism.


Assuntos
Caenorhabditis elegans/fisiologia , Neurônios/fisiologia , Sistema Nervoso Parassimpático/fisiologia , Animais , Animais Geneticamente Modificados , Anticorpos/química , Anticorpos/isolamento & purificação , Western Blotting , Colina O-Acetiltransferase/metabolismo , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Nematoides/metabolismo , Neurônios/classificação , Neurônios/metabolismo , Sistema Nervoso Parassimpático/citologia , Sistema Nervoso Parassimpático/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Frações Subcelulares/enzimologia , Frações Subcelulares/metabolismo , Sinapses/metabolismo , Sinapses/fisiologia , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Ácido gama-Aminobutírico/fisiologia
8.
Genetics ; 177(1): 195-204, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17603106

RESUMO

The cho-1 gene in Caenorhabditis elegans encodes a high-affinity plasma-membrane choline transporter believed to be rate limiting for acetylcholine (ACh) synthesis in cholinergic nerve terminals. We found that CHO-1 is expressed in most, but not all cholinergic neurons in C. elegans. cho-1 null mutants are viable and exhibit mild deficits in cholinergic behavior; they are slightly resistant to the acetylcholinesterase inhibitor aldicarb, and they exhibit reduced swimming rates in liquid. cho-1 mutants also fail to sustain swimming behavior; over a 33-min time course, cho-1 mutants slow down or stop swimming, whereas wild-type animals sustain the initial rate of swimming over the duration of the experiment. A functional CHO-1GFP fusion protein rescues these cho-1 mutant phenotypes and is enriched at cholinergic synapses. Although cho-1 mutants clearly exhibit defects in cholinergic behaviors, the loss of cho-1 function has surprisingly mild effects on cholinergic neurotransmission. However, reducing endogenous choline synthesis strongly enhances the phenotype of cho-1 mutants, giving rise to a synthetic uncoordinated phenotype. Our results indicate that both choline transport and de novo synthesis provide choline for ACh synthesis in C. elegans cholinergic neurons.


Assuntos
Acetilcolina/biossíntese , Caenorhabditis elegans/fisiologia , Colina/farmacocinética , Proteínas de Membrana Transportadoras/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Adaptação Fisiológica , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans , Imunofluorescência , Proteínas de Membrana Transportadoras/genética , Neurônios/citologia , Transmissão Sináptica , Distribuição Tecidual
9.
Curr Biol ; 13(15): 1317-23, 2003 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-12906792

RESUMO

While there is evidence that distinct protein isoforms resulting from alternative pre-mRNA splicing play critical roles in neuronal development and function, little is known about molecules regulating alternative splicing in the nervous system. Using Caenorhabditis elegans as a model for studying neuron/target communication, we report that unc-75 mutant animals display neuroanatomical and behavioral defects indicative of a role in modulating GABAergic and cholinergic neurotransmission but not neuronal development. We show that unc-75 encodes an RRM domain-containing RNA binding protein that is exclusively expressed in the nervous system and neurosecretory gland cells. UNC-75 protein, as well as a subset of related C. elegans RRM proteins, localizes to dynamic nuclear speckles; this localization pattern supports a role for the protein in pre-mRNA splicing. We found that human orthologs of UNC-75, whose splicing activity has recently been documented in vitro, are expressed nearly exclusively in brain and when expressed in C. elegans, rescue unc-75 mutant phenotypes and localize to subnuclear puncta. Furthermore, we report that the subnuclear-localized EXC-7 protein, the C. elegans ortholog of the neuron-restricted Drosophila ELAV splicing factor, acts in parallel to UNC-75 to also affect cholinergic synaptic transmission. In conclusion, we identified a new neuronal, putative pre-mRNA splicing factor, UNC-75, and show that UNC-75, as well as the C. elegans homolog of ELAV, is required for the fine tuning of synaptic transmission. These findings thus provide a novel molecular link between pre-mRNA splicing and presynaptic function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Transmissão Sináptica/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Dados de Sequência Molecular , Neurônios Motores/citologia , Filogenia , Transmissão Sináptica/genética
10.
Genetics ; 199(3): 729-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25571900

RESUMO

The essential neurotransmitter acetylcholine functions throughout the animal kingdom. In Caenorhabditis elegans, the acetylcholine biosynthetic enzyme [choline acetyltransferase (ChAT)] and vesicular transporter [vesicular acetylcholine transporter (VAChT)] are encoded by the cha-1 and unc-17 genes, respectively. These two genes compose a single complex locus in which the unc-17 gene is nested within the first intron of cha-1, and the two gene products arise from a common pre-messenger RNA (pre-mRNA) by alternative splicing. This genomic organization, known as the cholinergic gene locus (CGL), is conserved throughout the animal kingdom, suggesting that the structure is important for the regulation and function of these genes. However, very little is known about CGL regulation in any species. We now report the identification of an unusual type of splicing regulation in the CGL of C. elegans, mediated by two pairs of complementary sequence elements within the locus. We show that both pairs of elements are required for efficient splicing to the distal acceptor, and we also demonstrate that proper distal splicing depends more on sequence complementarity within each pair of elements than on the sequences themselves. We propose that these sequence elements are able to form stem-loop structures in the pre-mRNA; such structures would favor specific splicing alternatives and thus regulate CGL splicing. We have identified complementary elements at comparable locations in the genomes of representative species of other animal phyla; we suggest that this unusual regulatory mechanism may be a general feature of CGLs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Colina O-Acetiltransferase/genética , Genes Inseridos , Splicing de RNA , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Animais , Evolução Molecular
11.
Genetics ; 192(4): 1315-25, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23051648

RESUMO

The unc-17 gene encodes the vesicular acetylcholine transporter (VAChT) in Caenorhabditis elegans. unc-17 reduction-of-function mutants are small, slow growing, and uncoordinated. Several independent unc-17 alleles are associated with a glycine-to-arginine substitution (G347R), which introduces a positive charge in the ninth transmembrane domain (TMD) of UNC-17. To identify proteins that interact with UNC-17/VAChT, we screened for mutations that suppress the uncoordinated phenotype of UNC-17(G347R) mutants. We identified several dominant allele-specific suppressors, including mutations in the sup-1 locus. The sup-1 gene encodes a single-pass transmembrane protein that is expressed in a subset of neurons and in body muscles. Two independent suppressor alleles of sup-1 are associated with a glycine-to-glutamic acid substitution (G84E), resulting in a negative charge in the SUP-1 TMD. A sup-1 null mutant has no obvious deficits in cholinergic neurotransmission and does not suppress unc-17 mutant phenotypes. Bimolecular fluorescence complementation (BiFC) analysis demonstrated close association of SUP-1 and UNC-17 in synapse-rich regions of the cholinergic nervous system, including the nerve ring and dorsal nerve cords. These observations suggest that UNC-17 and SUP-1 are in close proximity at synapses. We propose that electrostatic interactions between the UNC-17(G347R) and SUP-1(G84E) TMDs alter the conformation of the mutant UNC-17 protein, thereby restoring UNC-17 function; this is similar to the interaction between UNC-17/VAChT and synaptobrevin.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Membrana/genética , Proteínas Vesiculares de Transporte de Acetilcolina/genética , Alelos , Substituição de Aminoácidos , Animais , Animais Geneticamente Modificados , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Genes Supressores , Teste de Complementação Genética/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Mutação , Sistema Nervoso/metabolismo , Estrutura Terciária de Proteína , Sinapses/genética , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo
12.
PLoS One ; 7(7): e40095, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22808098

RESUMO

The recycling of synaptic vesicles requires the recovery of vesicle proteins and membrane. Members of the stonin protein family (Drosophila Stoned B, mammalian stonin 2) have been shown to link the synaptic vesicle protein synaptotagmin to the endocytic machinery. Here we characterize the unc-41 gene, which encodes the stonin ortholog in the nematode Caenorhabditis elegans. Transgenic expression of Drosophila stonedB rescues unc-41 mutant phenotypes, demonstrating that UNC-41 is a bona fide member of the stonin family. In unc-41 mutants, synaptotagmin is present in axons, but is mislocalized and diffuse. In contrast, UNC-41 is localized normally in synaptotagmin mutants, demonstrating a unidirectional relationship for localization. The phenotype of snt-1 unc-41 double mutants is stronger than snt-1 mutants, suggesting that UNC-41 may have additional, synaptotagmin-independent functions. We also show that unc-41 mutants have defects in synaptic vesicle membrane endocytosis, including a ∼50% reduction of vesicles in both acetylcholine and GABA motor neurons. These endocytic defects are similar to those observed in apm-2 mutants, which lack the µ2 subunit of the AP2 adaptor complex. However, no further reduction in synaptic vesicles was observed in unc-41 apm-2 double mutants, suggesting that UNC-41 acts in the same endocytic pathway as µ2 adaptin.


Assuntos
Complexo 2 de Proteínas Adaptadoras/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Endocitose , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestrutura , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/metabolismo , Clonagem Molecular , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Genes de Helmintos/genética , Genoma/genética , Mutação/genética , Proteínas do Tecido Nervoso/metabolismo , Sistema Nervoso/metabolismo , Fenótipo , Transporte Proteico , Vesículas Sinápticas/ultraestrutura , Sinaptotagminas/metabolismo , Proteínas de Transporte Vesicular
13.
Dis Model Mech ; 3(5-6): 366-76, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20083577

RESUMO

Neuroligins are postsynaptic cell adhesion proteins that bind specifically to presynaptic membrane proteins called neurexins. Mutations in human neuroligin genes are associated with autism spectrum disorders in some families. The nematode Caenorhabditis elegans has a single neuroligin gene (nlg-1), and approximately a sixth of C. elegans neurons, including some sensory neurons, interneurons and a subset of cholinergic motor neurons, express a neuroligin transcriptional reporter. Neuroligin-deficient mutants of C. elegans are viable, and they do not appear deficient in any major motor functions. However, neuroligin mutants are defective in a subset of sensory behaviors and sensory processing, and are hypersensitive to oxidative stress and mercury compounds; the behavioral deficits are strikingly similar to traits frequently associated with autism spectrum disorders. Our results suggest a possible link between genetic defects in synapse formation or function, and sensitivity to environmental factors in the development of autism spectrum disorders.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/metabolismo , Moléculas de Adesão Celular Neuronais/deficiência , Mercúrio/toxicidade , Mutação/genética , Estresse Oxidativo/efeitos dos fármacos , Sensação/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Biomarcadores/metabolismo , Caenorhabditis elegans/citologia , Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Sinais (Psicologia) , Genes Reporter , Humanos , Células Musculares/citologia , Células Musculares/efeitos dos fármacos , Células Musculares/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Temperatura
14.
WormBook ; : 1-21, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-18050502

RESUMO

Acetylcholine is the major excitatory neurotransmitter at nematode neuromuscular junctions, and more than a third of the cells in the C. elegans nervous system release acetylcholine. Through a combination of forward genetics, drug-resistance selections, and genomic analysis, mutants have been identified for all of the steps specifically required for cholinergic function. These include two enzymes, two transporters, and a bewildering assortment of receptors. Cholinergic transmission is involved, directly or indirectly, in many C. elegans behaviors, including locomotion, egg laying, feeding, and male mating.


Assuntos
Acetilcolina/fisiologia , Caenorhabditis elegans/fisiologia , Acetilcolina/biossíntese , Acetilcolinesterase/metabolismo , Animais , Transporte Biológico , Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Caenorhabditis elegans/fisiologia , Colina/metabolismo , Vesículas Citoplasmáticas/fisiologia , Humanos , Receptores Colinérgicos/genética , Receptores Colinérgicos/metabolismo
15.
Mol Cell Neurosci ; 34(4): 642-52, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17321753

RESUMO

Synaptotagmin 1, encoded by the snt-1 gene in Caenorhabditis elegans, is a major synaptic vesicle protein containing two Ca(2+)-binding (C2) domains. Alternative splicing gives rise to two synaptotagmin 1 isoforms, designated SNT-1A and SNT-1B, which differ in amino acid sequence in the third, fourth, and fifth beta-strands of the second C2 domain (C2B). We report here that expression of either SNT-1 isoform under control of a strong pan-neural promoter fully rescues the snt-1 null phenotype. Furthermore, C-terminal fusions of either isoform with GFP are trafficked properly to synapses and are fully functional, unlike synaptotagmin 1Colon, two colonsGFP fusions in mice. Analysis of isoform expression with genomic GFP reporter constructs revealed that the SNT-1A and-1B isoforms are differentially expressed and localized in the C. elegans nervous system. We also report molecular, behavioral, and immunocytochemical analyses of twenty snt-1 mutations. One of these mutations, md259, specifically disrupts expression of the SNT-1A isoform and has defects in a subset of synaptotagmin 1-mediated behaviors. A second mutation, md220, is an in-frame 9-bp deletion that removes a conserved tri-peptide sequence (VIL) in the second beta-strand of the C2B domain and disrupts the proper intracellular trafficking of synaptotagmin. Site-directed mutagenesis of a functional SNT-1Colon, two colonsGFP fusion protein was used to examine the potential role of the VIL sequence in synaptotagmin trafficking. Although our results suggest the VIL sequence is most likely not a specific targeting motif, the use of SNT-1Colon, two colonsGFP fusions has great potential for investigating synaptotagmin trafficking and localization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sistema Nervoso Central/metabolismo , Sinaptotagmina I/genética , Sinaptotagmina I/metabolismo , Alelos , Processamento Alternativo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Imunofluorescência , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico/fisiologia , Proteínas Recombinantes de Fusão
16.
J Cell Biol ; 179(7): 1497-510, 2007 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-18166656

RESUMO

Synaptic transmission depends on clathrin-mediated recycling of synaptic vesicles (SVs). How select SV proteins are targeted for internalization has remained elusive. Stonins are evolutionarily conserved adaptors dedicated to endocytic sorting of the SV protein synaptotagmin. Our data identify the molecular determinants for recognition of synaptotagmin by stonin 2 or its Caenorhabditis elegans orthologue UNC-41B. The interaction involves the direct association of clusters of basic residues on the surface of the cytoplasmic domain of synaptotagmin 1 and a beta strand within the mu-homology domain of stonin 2. Mutation of K783, Y784, and E785 to alanine within this stonin 2 beta strand results in failure of the mutant stonin protein to associate with synaptotagmin, to accumulate at synapses, and to facilitate synaptotagmin internalization. Synaptotagmin-binding-defective UNC-41B is unable to rescue paralysis in C. elegans stonin mutant animals, suggesting that the mechanism of stonin-mediated SV cargo recognition is conserved from worms to mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Endocitose/fisiologia , Proteínas de Membrana/metabolismo , Sistema Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular , Sequência de Aminoácidos/fisiologia , Substituição de Aminoácidos/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular , Sequência Conservada , Evolução Molecular , Humanos , Proteínas de Membrana/genética , Mutação/genética , Sistema Nervoso/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Transmissão Sináptica/fisiologia , Vesículas Sinápticas/ultraestrutura , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA