Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Radiat Environ Biophys ; 54(1): 137-144, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25335641

RESUMO

A noninvasive, self-referencing biosensor/probe system has been integrated into the Columbia University Radiological Research Accelerator Facility Microbeam II end station. A single-cell oxygen consumption measurement has been conducted with this type of oxygen probe in 37° C Krebs-Ringer Bicarbonate buffer immediately before and after a single-cell microbeam irradiation. It is the first such measurement made for a microbeam irradiation, and a six fold increment of oxygen flux induced during a 15-s period of time has been observed following radiation exposure. The experimental procedure and the results are discussed.


Assuntos
Técnicas Biossensoriais , Consumo de Oxigênio , Aceleradores de Partículas , Linhagem Celular , Eletrodos , Humanos , Radiobiologia/instrumentação
2.
Nucl Instrum Methods Phys Res B ; 269(18): 1992-1996, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21811347

RESUMO

A soft x-ray microbeam using proton-induced x-ray emission (PIXE) of characteristic titanium (K(α) 4.5 keV) as the x-ray source has been developed at the Radiological Research Accelerator Facility (RARAF) at Columbia University. The proton beam is focused to a 120 µm × 50 µm spot on the titanium target using an electrostatic quadrupole quadruplet previously used for the charged particle microbeam studies at RARAF. The proton induced x-rays from this spot project a 50 µm round x-ray generation spot into the vertical direction. The x-rays are focused to a spot size of 5 µm in diameter using a Fresnel zone plate. The x-rays have an attenuation length of (1/e length of ~145 µm) allowing more consistent dose delivery across the depth of a single cell layer and penetration into tissue samples than previous ultra soft x-ray systems. The irradiation end station is based on our previous design to allow quick comparison to charged particle experiments and for mixed irradiation experiments.

3.
J Radiat Res ; 50 Suppl A: A21-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19346682

RESUMO

Charged-particle microbeams, developed to provide targeted irradiation of individual cells, and then of sub-cellular components, and then of 3-D tissues and now organisms, have been instrumental in challenging and changing long accepted paradigms of radiation action. However the potential of these valuable tools can be enhanced by integrating additional components with the direct ability to measure biological responses in real time, or to manipulate the cell, tissue or organism of interest under conditions where information gained can be optimized. The RARAF microbeam has recently undergone an accelerator upgrade, and been modified to allow for multiple microbeam irradiation laboratories. Researchers with divergent interests have expressed desires for particular modalities to be made available and ongoing developments reflect these desires. The focus of this review is on the design, incorporation and use of multiphoton and other imaging, micro-manipulation and single cell biosensor capabilities at RARAF. Additionally, an update on the status of the other biology oriented microbeams in the Americas is provided.


Assuntos
Bioensaio/instrumentação , Efeito Espectador/efeitos da radiação , Técnicas de Cultura de Células/instrumentação , Relação Dose-Resposta à Radiação , Aceleradores de Partículas/instrumentação , Radiobiologia/instrumentação , Animais , Bioensaio/métodos , Efeito Espectador/fisiologia , Técnicas de Cultura de Células/métodos , Desenho de Equipamento , Humanos , Doses de Radiação , Radiobiologia/métodos , Estados Unidos
4.
J Radiat Res ; 50 Suppl A: A49-54, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19346684

RESUMO

The understanding of complex radiation responses in biological systems, such as non-targeted effects as represented by the bystander response, can be enhanced by the use of genetically amenable model organisms. Almost all bystander studies to date have been carried out by using conventional single-cell in vitro systems, which are useful tools to characterize basic cellular and molecular responses. A few studies have been reported in monolayer explants and bystander responses have been also investigated in a three-dimensional normal human tissue system. However, despite the well-know usefulness of in vitro models, they cannot capture the complexity of radiation responses of living systems such as animal models. To carry out in vivo studies on the bystander effect we have developed a new technique to expose living organisms using proton microbeams. We report the use of a nematode C. elegans strain with a Green Fluorescent Protein (GFP) reporter for the hsp-4 heat-shock gene as an in vivo model for radiation studies. Exposing animals to heat and chemicals stressors leads to whole body increases in the hsp-4 protein reflected by enhanced fluorescence. We report here that gamma-rays also can induce stress response in a dose dependent manner. However, whole body exposure to stress agents does not allow for evaluation of distance dependent response in non targeted tissues: the so-called bystander effect. We used the RARAF microbeam to site specifically deliver 3 MeV protons to a site in the tail of young worms. GFP expression was enhanced after 24 hours in a number dependent manner at distances > 100 microm from the site of irradiation.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/efeitos da radiação , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/fisiologia , Resposta ao Choque Térmico/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Doses de Radiação
5.
PLoS One ; 13(2): e0192053, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466457

RESUMO

BACKGROUND: Prevention of superficial surgical wound infections from drug-resistant bacteria such as methicillin resistant Staphylococcus aureus (MRSA) currently present major health care challenges. The majority of surgical site infections (SSI) are believed to be caused by airborne transmission of bacteria alighting onto the wound during surgical procedures. We have previously shown that far-ultraviolet C light in the wavelength range of 207-222 nm is significantly harmful to bacteria, but without damaging mammalian cells and tissues. It is important that the lamp be fitted with a filter to remove light emitted at wavelengths longer than 230 nm which are harmful. AIMS: Using a hairless mouse model of infection of superficial wounds, here we tested the hypothesis that 222-nm light kills MRSA alighting onto a superficial skin incisions as efficiently as typical germicidal light (254 nm), but without inducing skin damage. METHODS: To simulate the scenario wherein incisions are infected during surgical procedures as pathogens in the room alight on a wound, MRSA was spread on a defined area of the mouse dorsal skin; the infected skin was then exposed to UVC light (222 nm or 254 nm) followed by a superficial incision within the defined area, which was immediately sutured. Two and seven days post procedure, bactericidal efficacy was measured as MRSA colony formation unit (CFU) per gram of harvested skin whereas fixed samples were used to assess skin damage measured in terms of epidermal thickness and DNA photodamage. RESULTS: In the circumstance of superficial incisions infected with bacteria alighting onto the wound, 222-nm light showed the same bactericidal properties of 254-nm light but without the associated skin damage. CONCLUSIONS: Being safe for patient and hospital staff, our results suggested that far-UVC light (222 nm) might be a convenient approach to prevent transmission of drug-resistant infectious agents in the clinical setting.


Assuntos
Modelos Animais de Doenças , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/prevenção & controle , Raios Ultravioleta , Ferimentos e Lesões/microbiologia , Animais , Contagem de Colônia Microbiana , Masculino , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos , Camundongos Pelados , Infecções Estafilocócicas/microbiologia
6.
PLoS One ; 13(8): e0202275, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30096188

RESUMO

Drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) are a target for new antimicrobial technologies. Far-UVC technology is an emerging disinfection method that directly kills microorganisms using light. In contrast with conventional UV sterilization, far-UVC light has antimicrobial capabilities without apparent harm to mammalian cells. This study examines the application of 224 nm far-UVC light delivered from a laser using an optical diffuser towards the goal of protecting against bacterial invasion around skin penetrating devices. Delivery of far-UVC using a laser and optical fibers enables exposure to unique geometries that would otherwise be shielded when using a lamp. Testing of the bactericidal potential of diffusing the far-UVC laser output over a large area was tested and yielded qualitative area killing results. The killing of MRSA using this method was also examined using an in vitro survival assay. Results followed a classic log-linear disinfection model with a rate constant of k = 0.51 cm2/mJ, which corresponds to an inactivation cross section of D90 = 4.5 mJ/cm2. This study establishes far-UVC delivered from a laser through an optical diffuser as a viable solution for disinfection of susceptible regions such as around catheters, drivelines, or other skin penetrating medical devices.


Assuntos
Desinfecção/instrumentação , Desinfecção/métodos , Lasers , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Fibras Ópticas , Raios Ultravioleta , Tecnologia de Fibra Óptica , Técnicas In Vitro
7.
Sci Rep ; 8(1): 2752, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29426899

RESUMO

Airborne-mediated microbial diseases such as influenza and tuberculosis represent major public health challenges. A direct approach to prevent airborne transmission is inactivation of airborne pathogens, and the airborne antimicrobial potential of UVC ultraviolet light has long been established; however, its widespread use in public settings is limited because conventional UVC light sources are both carcinogenic and cataractogenic. By contrast, we have previously shown that far-UVC light (207-222 nm) efficiently inactivates bacteria without harm to exposed mammalian skin. This is because, due to its strong absorbance in biological materials, far-UVC light cannot penetrate even the outer (non living) layers of human skin or eye; however, because bacteria and viruses are of micrometer or smaller dimensions, far-UVC can penetrate and inactivate them. We show for the first time that far-UVC efficiently inactivates airborne aerosolized viruses, with a very low dose of 2 mJ/cm2 of 222-nm light inactivating >95% of aerosolized H1N1 influenza virus. Continuous very low dose-rate far-UVC light in indoor public locations is a promising, safe and inexpensive tool to reduce the spread of airborne-mediated microbial diseases.


Assuntos
Desinfecção/métodos , Vírus da Influenza A Subtipo H1N1/efeitos da radiação , Influenza Humana/prevenção & controle , Influenza Humana/transmissão , Raios Ultravioleta , Humanos , Viabilidade Microbiana
8.
Radiat Prot Dosimetry ; 176(4): 341-346, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338819

RESUMO

Measurement of ultraviolet (UV) radiation is important for human health, especially with the expanded usage of short wavelength UV for sterilization purposes. This work examines unlaminated Gafchromic EBT3 film for UV radiation monitoring. The authors exposed the film to select wavelengths in the UV spectrum, ranging from 207 to 328 nm, and measured the change in optical density. The response of the film is wavelength dependent, and of the wavelengths tested, the film was most sensitive to 254 nm light, with measurable values as low as 10 µJ/cm2. The film shows a dose-dependent response that extends over more than four orders of magnitude. The response of the film to short wavelength UV is comparable to the daily safe exposure limits for humans, thus making it valuable as a tool for passive UV radiation monitoring.


Assuntos
Dosimetria Fotográfica/métodos , Raios Ultravioleta , Calibragem , Humanos , Análise Espectral/métodos
9.
Radiat Res ; 187(4): 433-442, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28140787

RESUMO

Anatomically accurate phantoms are useful tools for radiation dosimetry studies. In this work, we demonstrate the construction of a new generation of life-like mouse phantoms in which the methods have been generalized to be applicable to the fabrication of any small animal. The mouse phantoms, with built-in density inhomogeneity, exhibit different scattering behavior dependent on where the radiation is delivered. Computer models of the mouse phantoms and a small animal irradiation platform were devised in Monte Carlo N-Particle code (MCNP). A baseline test replicating the irradiation system in a computational model shows minimal differences from experimental results from 50 Gy down to 0.1 Gy. We observe excellent agreement between scattered dose measurements and simulation results from X-ray irradiations focused at either the lung or the abdomen within our phantoms. This study demonstrates the utility of our mouse phantoms as measurement tools with the goal of using our phantoms to verify complex computational models.


Assuntos
Materiais Biomiméticos/efeitos da radiação , Imagens de Fantasmas/veterinária , Radiometria/instrumentação , Radiometria/veterinária , Espalhamento de Radiação , Irradiação Corporal Total/veterinária , Animais , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Camundongos , Modelos Biológicos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/veterinária , Irradiação Corporal Total/instrumentação
10.
Radiat Res ; 187(4): 465-475, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28211757

RESUMO

Validation of biodosimetry assays is normally performed with acute exposures to uniform external photon fields. Realistically, exposure to a radiological dispersal device or reactor leak will include exposure to low dose rates and likely exposure to ingested radionuclides. An improvised nuclear device will likely include a significant neutron component in addition to a mixture of high- and low-dose-rate photons and ingested radionuclides. We present here several novel irradiation systems developed at the Center for High Throughput Minimally Invasive Radiation Biodosimetry to provide more realistic exposures for testing of novel biodosimetric assays. These irradiators provide a wide range of dose rates (from Gy/s to Gy/week) as well as mixed neutron/photon fields mimicking an improvised nuclear device.


Assuntos
Modelos Teóricos , Armas Nucleares , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Liberação Nociva de Radioativos , Radiometria/métodos , Animais , Sangue/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Camundongos , Nêutrons
11.
Radiat Res ; 187(4): 483-491, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28225654

RESUMO

We have previously shown that 207-nm ultraviolet (UV) light has similar antimicrobial properties as typical germicidal UV light (254 nm), but without inducing mammalian skin damage. The biophysical rationale is based on the limited penetration distance of 207-nm light in biological samples (e.g. stratum corneum) compared with that of 254-nm light. Here we extended our previous studies to 222-nm light and tested the hypothesis that there exists a narrow wavelength window in the far-UVC region, from around 200-222 nm, which is significantly harmful to bacteria, but without damaging cells in tissues. We used a krypton-chlorine (Kr-Cl) excimer lamp that produces 222-nm UV light with a bandpass filter to remove the lower- and higher-wavelength components. Relative to respective controls, we measured: 1. in vitro killing of methicillin-resistant Staphylococcus aureus (MRSA) as a function of UV fluence; 2. yields of the main UV-associated premutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) in a 3D human skin tissue model in vitro; 3. eight cellular and molecular skin damage endpoints in exposed hairless mice in vivo. Comparisons were made with results from a conventional 254-nm UV germicidal lamp used as positive control. We found that 222-nm light kills MRSA efficiently but, unlike conventional germicidal UV lamps (254 nm), it produces almost no premutagenic UV-associated DNA lesions in a 3D human skin model and it is not cytotoxic to exposed mammalian skin. As predicted by biophysical considerations and in agreement with our previous findings, far-UVC light in the range of 200-222 nm kills bacteria efficiently regardless of their drug-resistant proficiency, but without the skin damaging effects associated with conventional germicidal UV exposure.


Assuntos
Desinfecção/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Pele/efeitos da radiação , Raios Ultravioleta , Animais , Diferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , DNA/efeitos da radiação , Dano ao DNA , Epiderme/anatomia & histologia , Epiderme/efeitos da radiação , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos da radiação , Masculino , Camundongos , Camundongos Pelados , Radiodermite/etiologia , Radiodermite/metabolismo , Radiodermite/patologia , Pele/citologia , Pele/metabolismo , Pele/microbiologia , Terapia Ultravioleta
12.
PLoS One ; 11(6): e0138418, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27275949

RESUMO

BACKGROUND: UVC light generated by conventional germicidal lamps is a well-established anti-microbial modality, effective against both bacteria and viruses. However, it is a human health hazard, being both carcinogenic and cataractogenic. Earlier studies showed that single-wavelength far-UVC light (207 nm) generated by excimer lamps kills bacteria without apparent harm to human skin tissue in vitro. The biophysical explanation is that, due to its extremely short range in biological material, 207 nm UV light cannot penetrate the human stratum corneum (the outer dead-cell skin layer, thickness 5-20 µm) nor even the cytoplasm of individual human cells. By contrast, 207 nm UV light can penetrate bacteria and viruses because these cells are physically much smaller. AIMS: To test the biophysically-based hypothesis that 207 nm UV light is not cytotoxic to exposed mammalian skin in vivo. METHODS: Hairless mice were exposed to a bactericidal UV fluence of 157 mJ/cm2 delivered by a filtered Kr-Br excimer lamp producing monoenergetic 207-nm UV light, or delivered by a conventional 254-nm UV germicidal lamp. Sham irradiations constituted the negative control. Eight relevant cellular and molecular damage endpoints including epidermal hyperplasia, pre-mutagenic UV-associated DNA lesions, skin inflammation, and normal cell proliferation and differentiation were evaluated in mice dorsal skin harvested 48 h after UV exposure. RESULTS: While conventional germicidal UV (254 nm) exposure produced significant effects for all the studied skin damage endpoints, the same fluence of 207 nm UV light produced results that were not statistically distinguishable from the zero exposure controls. CONCLUSIONS: As predicted by biophysical considerations and in agreement with earlier in vitro studies, 207-nm light does not appear to be significantly cytotoxic to mouse skin. These results suggest that excimer-based far-UVC light could potentially be used for its anti-microbial properties, but without the associated hazards to skin of conventional germicidal UV lamps.


Assuntos
Epiderme , Infecção da Ferida Cirúrgica/terapia , Raios Ultravioleta , Animais , Epiderme/metabolismo , Epiderme/microbiologia , Humanos , Masculino , Camundongos , Camundongos Pelados
14.
Nucl Instrum Methods Phys Res A ; 794: 234-239, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26273118

RESUMO

A novel neutron irradiation facility at the Radiological Research Accelerator Facility (RARAF) has been developed to mimic the neutron radiation from an Improvised Nuclear Device (IND) at relevant distances (e.g. 1.5 km) from the epicenter. The neutron spectrum of this IND-like neutron irradiator was designed according to estimations of the Hiroshima neutron spectrum at 1.5 km. It is significantly different from a standard reactor fission spectrum, because the spectrum changes as the neutrons are transported through air, and it is dominated by neutron energies from 100 keV up to 9 MeV. To verify such wide energy range neutron spectrum, detailed here is the development of a combined spectroscopy system. Both a liquid scintillator detector and a gas proportional counter were used for the recoil spectra measurements, with the individual response functions estimated from a series of Monte Carlo simulations. These normalized individual response functions were formed into a single response matrix for the unfolding process. Several accelerator-based quasi-monoenergetic neutron source spectra were measured and unfolded to test this spectroscopy system. These reference neutrons were produced from two reactions: T(p,n)3He and D(d,n)3He, generating neutron energies in the range between 0.2 and 8 MeV. The unfolded quasi-monoenergetic neutron spectra indicated that the detection system can provide good neutron spectroscopy results in this energy range. A broad-energy neutron spectrum from the 9Be(d,n) reaction using a 5 MeV deuteron beam, measured at 60 degrees to the incident beam was measured and unfolded with the evaluated response matrix. The unfolded broad neutron spectrum is comparable with published time-of-flight results. Finally, the pair of detectors were used to measure the neutron spectrum generated at the RARAF IND-like neutron facility and a comparison is made to the neutron spectrum of Hiroshima.

15.
Radiat Res ; 184(4): 404-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26414507

RESUMO

We describe here an accelerator-based neutron irradiation facility, intended to expose blood or small animals to neutron fields mimicking those from an improvised nuclear device at relevant distances from the epicenter. Neutrons are generated by a mixed proton/deuteron beam on a thick beryllium target, generating a broad spectrum of neutron energies that match those estimated for the Hiroshima bomb at 1.5 km from ground zero. This spectrum, dominated by neutron energies between 0.2 and 9 MeV, is significantly different from the standard reactor fission spectrum, as the initial bomb spectrum changes when the neutrons are transported through air. The neutron and gamma dose rates were measured using a custom tissue-equivalent gas ionization chamber and a compensated Geiger-Mueller dosimeter, respectively. Neutron spectra were evaluated by unfolding measurements using a proton-recoil proportional counter and a liquid scintillator detector. As an illustration of the potential use of this facility we present micronucleus yields in single divided, cytokinesis-blocked human peripheral lymphocytes up to 1.5 Gy demonstrating 3- to 5-fold enhancement over equivalent X-ray doses. This facility is currently in routine use, irradiating both mice and human blood samples for evaluation of neutron-specific biodosimetry assays. Future studies will focus on dose reconstruction in realistic mixed neutron/photon fields.


Assuntos
Modelos Biológicos , Nêutrons , Guerra Nuclear , Animais , Humanos , Testes para Micronúcleos
16.
Radiat Res ; 160(5): 512-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14565832

RESUMO

Two conflicting phenomena, the bystander effect and the adaptive response, are important in determining biological responses at low doses of radiation and have the potential to have an impact on the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we reported previously that nonirradiated cells acquired mutagenesis through direct contact with cells whose nuclei had previously been traversed with either a single or 20 alpha particles each. Here we show that pretreatment of cells with a low dose of X rays 4 h before alpha-particle irradiation significantly decreased this bystander mutagenic response. Furthermore, bystander cells showed an increase in sensitivity after a subsequent challenging dose of X rays. Results from the present study address some of the pressing issues regarding both the actual target size and the radiation dose response and can improve on our current understanding of radiation risk assessment.


Assuntos
Adaptação Fisiológica/fisiologia , Adaptação Fisiológica/efeitos da radiação , Efeito Espectador/efeitos da radiação , Células Híbridas/fisiologia , Células Híbridas/efeitos da radiação , Mutagênese/efeitos da radiação , Medição de Risco/métodos , Partículas alfa , Animais , Antígenos CD59/efeitos da radiação , Cromossomos Humanos Par 11/efeitos da radiação , Cricetinae , Relação Dose-Resposta à Radiação , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Mamíferos , Mutagênese/fisiologia , Tolerância a Radiação/efeitos da radiação , Raios X
17.
Radiat Res ; 162(4): 426-32, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15447040

RESUMO

Normal human fibroblasts in plateau phase ( congruent with 95% G(1) phase) were stained with the vital nuclear dye Hoechst 33342 (blue fluorescence) or the vital cytoplasmic dye Cell Tracker Orange (orange fluorescence) and plated at a ratio of 1:1. Only the blue-fluorescing nuclei were microbeam-irradiated with a defined number of 90 keV/microm alpha particles. The orange-fluorescing cells were then "bystanders", i.e. not themselves hit but adjacent to cells that were. Hit cells showed a fluence-dependent induction of micronuclei as well as delays in progression from G(1) to S phase. Known bystander cells also showed enhanced frequencies of micronuclei (intermediate between those seen in irradiated and control cells) and transient cell cycle delays. However, the induction of micronuclei in bystander cells did not appear to be dependent on the fluence of the particles delivered to the neighboring hit cells. These are the first studies in which the bystander effect has been visualized directly rather than inferred. They indicate that the phenomenon has a quantitative basis and imply that the target for radiation effects cannot be considered to be the individual cell.


Assuntos
Efeito Espectador , Fibroblastos/efeitos da radiação , Partículas alfa/efeitos adversos , Apoptose/efeitos da radiação , Benzimidazóis/farmacologia , Bromodesoxiuridina/farmacologia , Ciclo Celular , Corantes/farmacologia , Citoplasma/metabolismo , Relação Dose-Resposta à Radiação , Fibroblastos/metabolismo , Fase G1 , Humanos , Micronúcleos com Defeito Cromossômico , Microscopia de Fluorescência , Radiação Ionizante , Espécies Reativas de Oxigênio , Fase S , Fatores de Tempo , Raios X/efeitos adversos
18.
Radiat Res ; 181(2): 146-61, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24502354

RESUMO

The development of, and results from an image analysis system are presented for automated detection and scoring of micronuclei in human peripheral blood lymphocytes. The system is part of the Rapid Automated Biodosimetry Tool, which was developed at the Center for High-Throughput Minimally Invasive Radiation Biodosimetry for rapid radiation dose assessment of many individuals based on single fingerstick samples of blood. Blood lymphocytes were subjected to the cytokinesis-block micronucleus assay and the images of cell cytoplasm and nuclei are analyzed to estimate the frequency of micronuclei in binucleated cells. We describe an algorithm that is based on dual fluorescent labeling of lymphocytes with separate analysis of images of cytoplasm and nuclei. To evaluate the performance of the system, blood samples of seven healthy donors were irradiated in vitro with doses from 0-10 Gy and dose-response curves of micronuclei frequencies were generated. To establish the applicability of the system to the detection of high doses, the ratios of mononucleated cells to binucleated cells were determined for three of the donors. All of the dose-response curves generated automatically showed clear dose dependence and good correlation (R(2) from 0.914-0.998) with the results of manual scoring.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Radiometria/métodos , Automação , Relação Dose-Resposta à Radiação , Humanos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Testes para Micronúcleos , Software , Fatores de Tempo
19.
Rev Sci Instrum ; 84(5): 053701, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23742552

RESUMO

A novel technique for label-free imaging of live biological cells in aqueous medium that is insensitive to ambient vibrations is presented. This technique is a spin-off from previously developed immersion Mirau interferometry. Both approaches utilize a modified Mirau interferometric attachment for a microscope objective that can be used both in air and in immersion mode, when the device is submerged in cell medium and has its internal space filled with liquid. While immersion Mirau interferometry involves first capturing a series of images, the resulting images are potentially distorted by ambient vibrations. Overcoming these serial-acquisition challenges, simultaneous immersion Mirau interferometry incorporates polarizing elements into the optics to allow simultaneous acquisition of two interferograms. The system design and production are described and images produced with the developed techniques are presented.


Assuntos
Interferometria/instrumentação , Imagem Molecular/instrumentação , Células 3T3 , Animais , Desenho de Equipamento , Imersão , Luz , Camundongos , Fatores de Tempo , Vibração
20.
PLoS One ; 8(10): e76968, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146947

RESUMO

BACKGROUND: 0.5% to 10% of clean surgeries result in surgical-site infections, and attempts to reduce this rate have had limited success. Germicidal UV lamps, with a broad wavelength spectrum from 200 to 400 nm are an effective bactericidal option against drug-resistant and drug-sensitive bacteria, but represent a health hazard to patient and staff. By contrast, because of its limited penetration, ~200 nm far-UVC light is predicted to be effective in killing bacteria, but without the human health hazards to skin and eyes associated with conventional germicidal UV exposure. AIMS: The aim of this work was to test the biophysically-based hypothesis that ~200 nm UV light is significantly cytotoxic to bacteria, but minimally cytotoxic or mutagenic to human cells either isolated or within tissues. METHODS: A Kr-Br excimer lamp was used, which produces 207-nm UV light, with a filter to remove higher-wavelength components. Comparisons were made with results from a conventional broad spectrum 254-nm UV germicidal lamp. First, cell inactivation vs. UV fluence data were generated for methicillin-resistant S. aureus (MRSA) bacteria and also for normal human fibroblasts. Second, yields of the main UV-associated pre-mutagenic DNA lesions (cyclobutane pyrimidine dimers and 6-4 photoproducts) were measured, for both UV radiations incident on 3-D human skin tissue. RESULTS: We found that 207-nm UV light kills MRSA efficiently but, unlike conventional germicidal UV lamps, produces little cell killing in human cells. In a 3-D human skin model, 207-nm UV light produced almost no pre-mutagenic UV-associated DNA lesions, in contrast to significant yields induced by a conventional germicidal UV lamp. CONCLUSIONS: As predicted based on biophysical considerations, 207-nm light kills bacteria efficiently but does not appear to be significantly cytotoxic or mutagenic to human cells. Used appropriately, 207-nm light may have the potential for safely and inexpensively reducing surgical-site infection rates, including those of drug-resistant origin.


Assuntos
Raios Ultravioleta , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos da radiação , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Pele/metabolismo , Pele/microbiologia , Pele/efeitos da radiação , Infecção da Ferida Cirúrgica/prevenção & controle , Infecção da Ferida Cirúrgica/terapia , Terapia Ultravioleta/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA