Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 167A(8): 1747-57, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25944730

RESUMO

Aortopathy can be defined as aortic dilation, aneurysm, dissection, and tortuosity. Familial aortopathy may occur secondary to fibrillin-1 (FBN1) mutations in the setting of Marfan syndrome, or may occur as a result of other genetic defects with different, but occasionally overlapping, phenotypes. Because of the phenotypic overlap and genetic heterogeneity of disorders featuring aortopathy, we developed a next generation sequencing (NGS) assay and comparative genomic hybridization (CGH) array to detect mutations in 10 genes that cause thoracic aortic aneurysms (TAAs). Here, we report on the clinical and molecular findings in 175 individuals submitted for aortopathy panel testing at ARUP laboratories. Ten genes associated with heritable aortopathies were targeted using hybridization capture prior to sequencing. NGS results were analyzed, and variants were confirmed using Sanger sequencing. Array CGH was used to detect copy-number variation. Of 175 individuals, 18 had a pathogenic mutation and 32 had a variant of uncertain significance (VUS). Most pathogenic mutations (72%) were identified in FBN1. A novel large SMAD3 duplication and FBN1 deletion were identified. Over half who had TAAs or other aortic involvement tested negative for a mutation, suggesting that additional aortopathy genes exist. We anticipate that the clinical sensitivity of at least 10.3% will rise with VUS reclassification and as additional genes are identified and included in the panel. The aortopathy NGS panel aids in the timely molecular diagnosis of individuals with disorders featuring aortopathy and guides proper treatment.


Assuntos
Doenças da Aorta/patologia , Síndrome de Marfan/diagnóstico , Análise de Sequência de DNA/métodos , Feminino , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Marfan/patologia
2.
J Biomed Biotechnol ; 2012: 405940, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22910714

RESUMO

Bacterial artificial chromosome (BAC) libraries are critical for identifying full-length genomic sequences, correlating genetic and physical maps, and comparative genomics. Here we describe the utilization of the Fluidigm access array genotyping system in conjunction with KASPar genotyping technology to identify individual BAC clones corresponding to specific single-nucleotide polymorphisms (SNPs) from an Amplicon Express seven-plate super pooled Amaranthus hypochondriacus BAC library. Ninety-six SNP loci, spanning the length of A. hypochondriacus linkage groups 1, 2, and 15, were simultaneously tested for clone identification from four BAC super pools, corresponding to 28 384-well plates, using a single Fluidigm integrated fluidic chip (IFC). Forty-six percent of the SNPs were associated with a single unambiguous identified BAC clone. PCR amplification and next-generation sequencing of individual BAC clones confirmed the IFC clone identification. Utilization of the Fluidigm Dynamic array platform allowed for the simultaneous PCR screening of 10,752 BAC pools for 96 SNP tag sites in less than three hours at a cost of ~$0.05 per reaction.


Assuntos
Amaranthus/genética , Cromossomos Artificiais Bacterianos/genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Clonagem Molecular , Ligação Genética , Marcadores Genéticos , Testes Genéticos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA