Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Indian J Microbiol ; 63(4): 513-519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38031618

RESUMO

Bovine viral diarrheal virus (BVDV) and bovine coronavirus (BCoV) are prevalent viral infections in buffalo calves that result in significant economic losses globally. However, Bovine picobirnavirus (BPBV) Group I and II has been an emerging causes of gastrointestinal infection as has been detected with mixed of BVDV as well as BCV. To combat economic losses and viral infection, a rapid and innovative multiplex-PCR assay (M-PCR) was developed to simultaneously identify BVDV, BCV, and BPBV. The assay employed three primer pairs, each specific to a particular virus. Notably, the primers for BCV and BVDV, targeting the transmembrane (M) Mebus gene and 5'UTR genes, respectively, were self-designed. To validate the assay, 300 samples of buffalo calf feces were subjected to the standardized multiplex PCR. The results demonstrated that 54 (18%) samples tested positive for multiple viruses, with 16.67% samples infected by BVDV, 0.9% by BCoV, and 0.13% by BPBV, as detected by the M-PCR assay. In summary, this developed assay is characterized by high specificity, sensitivity, throughput, and speed, enabling the simultaneous detection of the three viruses in a single reaction tube. Consequently, it holds potential for epidemiological investigations. It is worth noting that, to the best of our knowledge, this is the first reported multiplex assay for the worldwide detection of BVDV, BCoV, and BPBV. This novel assay promises to aid in the detection of mixed infections in the gastrointestinal tract.

2.
Genomics ; 112(2): 1861-1865, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31678152

RESUMO

The present report communicates the first full genome sequencing of the Garlic virus X from northern India. The total genome size of Garlic virus X (MK503771) reported in this study is 8458 bp ssRNA. The full genome sequence analysis showed the close relationship of Garlic virus X from India to that of from China, Korea, Australia and Spain. The full genome sequence based study of Indian Garlic virus X reveals the geographical relationship of this virus in India and global origin which may assists in development of control strategy for this virus.


Assuntos
Flexiviridae/genética , Genoma Viral , Flexiviridae/classificação , Flexiviridae/patogenicidade , Alho/virologia , Filogenia , Sequenciamento Completo do Genoma
3.
J Virol ; 86(15): 8337-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22787269

RESUMO

In this article, we document the first complete genome sequence of an isolate of bluetongue virus serotype 16 (BTV16) from a goat in India. The virus was isolated from an in-contact goat from an animal farm in Chennai where clinical disease occurs in sheep. The total size of the genome is 19,185 bp. The information provided for full-length sequences of all 10 segments will help in understanding the geographical origin and transmission of the Indian isolate of BTV16 as well as its comparison with global isolates of BTV16 of sheep, cattle, and other host species origins.


Assuntos
Vírus Bluetongue/genética , Genoma Viral , Animais , Sequência de Bases , Vírus Bluetongue/patogenicidade , Bovinos/virologia , Cabras/virologia , Índia , Dados de Sequência Molecular , Análise de Sequência de DNA , Ovinos/virologia
4.
J Nanosci Nanotechnol ; 21(6): 3404-3452, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739797

RESUMO

Emergence of multidrug resistance (MDR), extensively drug resistance (XDR) and pandrug resistance (PDR) strains of bacteria in communicable diseases of zoonotic and reverse zoonotic importance is the major hurdle of one health concept. Increasing level of resistance against antibiotics among bacterial population throughout the world, slow pace of new antibacterial drug discovery and enhanced pace of resistance development by pathogenic bacteria possess major challenges for human and animal health as well as life in future. Alternative management strategy in terms of improved prophylactic vaccine; early, easy and effective diagnostics and therapeutic drugs against those resistant bacteria is the need of the hour. In this context nanomedicine can fit into the multifaceted demands as an effective prophylactic and theranostic alternative to control the communicable diseases in a cost effective manner in the era of microbial resistance. The current review is focused towards delineating the application of nanomaterials as vaccine or drug delivery system, diagnostics and directly acting antimicrobial therapeutic agents in combating the important zoonotic and reverse zoonotic bacterial diseases in recent scenario along with their potential benefits, limitations and future prospects to formulate successful eradication strategies.


Assuntos
Zoonoses Bacterianas , Nanomedicina , Animais , Antibacterianos/farmacologia , Bactérias , Humanos , Medicina de Precisão
5.
Curr Top Med Chem ; 20(11): 915-962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32209041

RESUMO

BACKGROUND: Emerging viral zoonotic diseases are one of the major obstacles to secure the "One Health" concept under the current scenario. Current prophylactic, diagnostic and therapeutic approaches often associated with certain limitations and thus proved to be insufficient for customizing rapid and efficient combating strategy against the highly transmissible pathogenic infectious agents leading to the disastrous socio-economic outcome. Moreover, most of the viral zoonoses originate from the wildlife and poor knowledge about the global virome database renders it difficult to predict future outbreaks. Thus, alternative management strategy in terms of improved prophylactic vaccines and their delivery systems; rapid and efficient diagnostics and effective targeted therapeutics are the need of the hour. METHODS: Structured literature search has been performed with specific keywords in bibliographic databases for the accumulation of information regarding current nanomedicine interventions along with standard books for basic virology inputs. RESULTS: Multi-arrayed applications of nanomedicine have proved to be an effective alternative in all the aspects regarding the prevention, diagnosis, and control of zoonotic viral diseases. The current review is focused to outline the applications of nanomaterials as anti-viral vaccines or vaccine/drug delivery systems, diagnostics and directly acting therapeutic agents in combating the important zoonotic viral diseases in the recent scenario along with their potential benefits, challenges and prospects to design successful control strategies. CONCLUSION: This review provides significant introspection towards the multi-arrayed applications of nanomedicine to combat several important zoonotic viral diseases.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Vacinas Virais/química , Zoonoses Virais/diagnóstico , Zoonoses Virais/prevenção & controle , Zoonoses Virais/terapia , Vírus/efeitos dos fármacos , Animais , Animais Selvagens , Técnicas Biossensoriais , Portadores de Fármacos/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Humanos , Nanomedicina , Nanopartículas/química , Polímeros/química , Polímeros/metabolismo , Transfecção , Vírus/metabolismo
6.
Curr Pharm Des ; 25(13): 1554-1579, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31218956

RESUMO

BACKGROUND: Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE: The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS: Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION: Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos , Mycobacterium tuberculosis , Nanomedicina/tendências , Tuberculose Resistente a Múltiplos Medicamentos , Animais , Sistemas de Liberação de Medicamentos , Humanos
7.
Biomed Pharmacother ; 97: 1521-1537, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29793315

RESUMO

In recent years nanotechnology has revolutionized the healthcare strategies and envisioned to have a tremendous impact to offer better health facilities. In this context, medical nanotechnology involves design, fabrication, regulation, and application of therapeutic drugs and devices having a size in nano-range (1-100 nm). Owing to the revolutionary implications in drug delivery and gene therapy, nanotherapeutics has gained increasing research interest in the current medical sector of the modern world. The areas which anticipate benefits from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic problems. The development of nanotherapeutics with multi-functionalities has considerable potential to fill the lacunae existing in the present therapeutic domain. Nanomedicines in the field of cancer management have enhanced permeability and retention of drugs thereby effectively targeting the affected tissues. Polymeric conjugates of asparaginase, polymeric micelles of paclitaxel have been recmended for various types of cancer treatment .The advancement of nano therapeutics and diagnostics can provide the improved effectiveness of the drug with less or no toxicity concerns. Similarly, diagnostic imaging is having potential future applications with newer imaging elements at nano level. The newly emerging field of nanorobotics can provide new directions in the field of healthcare. In this article, an attempt has been made to highlight the novel nanotherapeutic potentialities of polymeric nanoparticles, nanoemulsion, solid lipid nanoparticle, nanostructured lipid carriers, dendrimers, nanocapsules and nanosponges based approaches. The useful applications of these nano-medicines in the field of cancer, nutrition, and health have been discussed in details. Regulatory and safety concerns along with the commercial status of nanosystems have also been presented. In summary, a successful translation of emerging nanotherapeutics into commercial products may lead to an expansion of biomedical science. Towards the end of the review, future perspectives of this important field have been introduced briefly.


Assuntos
Atenção à Saúde , Nanomedicina , Animais , Técnicas Biossensoriais , Sistemas de Liberação de Medicamentos , Humanos , Nanopartículas/efeitos adversos , Nanopartículas/toxicidade , Engenharia Tecidual
8.
Curr Drug Metab ; 18(10): 942-970, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28952435

RESUMO

BACKGROUND: Viruses are the most devastating pathogens of almost all life forms including humans and animals. Viruses can replicate very fast and may affect any metabolic and physiological function of the host cell. Therefore, it has been a challenge to develop a universal and common treatment against viral pathogens, in contrast to bacterial pathogens. Virus-host interaction is a complex phenomenon and often is virus- and host cell-specific. Exciting new insights into the molecular pathogenesis and host-virus interactions have been gained over the past few decades. These advances have enabled researchers to design better antiviral drugs. METHODS: The literature related to various aspects of virus-host interactions: new insights and advances in drug development was collected from several scientific research related databases such as Science Direct, Google Scholar, Scopus, PubMed, AGRICOLA, and Medline, etc. Total number of 319 research papers was used to compile the information regarding drug development against viral pathogens. RESULTS: Clinical adequacy of antiviral drugs and their bioavailability are important parameters for effective treatment of viral infections. The problems associated with effective delivery of a drug in a safe and desired quantity have led to the search for (and design of) better drug delivery systems. In recent past, several new antiviral drugs have been developed, which have high therapeutic effectiveness against life-threatening viral diseases such as HIV, hepatitis B virus, herpes virus, dengue virus and influenza virus infections. The majority of recent advances in antiviral drug discovery were possible due to the developments in allied fields such as in vitro virus cultivation technology, molecular biology of viral-genome-encoded enzymes, complete-genome-sequence-based studies of viruses and identification of suitable targets for antiviral drugs in viral genomes. Recently, several novel drug delivery approaches including small interfering RNAs (siRNAs) have emerged to aid antiviral therapy. CONCLUSION: The present review is aimed at providing an update on research and development efforts being made to create effective antiviral chemotherapeutic agents and approaches to their delivery to appropriate targeted cells or tissues.


Assuntos
Antivirais , Interações Hospedeiro-Patógeno , Fenômenos Fisiológicos Virais , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Descoberta de Drogas , Humanos , Anticorpos de Domínio Único/uso terapêutico , Viroses/tratamento farmacológico
9.
Virus Res ; 173(2): 336-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23353779

RESUMO

The genome of bluetongue virus (BTV) consists of 10 segments. Of these seg-2 encoded VP2 is the major serotype determining protein, and seg-6 encoded VP5 protein enhances the protective neutralizing activity of VP2 protein inducing higher serotype specific antibody titer than the VP2 alone. Out of the twenty-six BTV serotypes found worldwide, 22 were reported from different states of India. These include serotype 21 which was recently isolated from Andhra Pradesh, and was involved in a severe outbreak of bluetongue in Indian native sheep. BTV21 (KMNO-7) and BTV16 were circulating at the same time. This co-circulation, along with the fact that the virus genome is segmented, provides an opportunity for these two isolates of different serotypes to simultaneously infect the same animal, and even the same cell or a same vector with the potential for generation of reassortant viruses. This study was carried out to provide some insights into the outbreak. We carried out full length sequencing of genome seg-2 and seg-6 of Indian isolates VJW64 (BTV16) and KMNO-7 (BTV21). Detailed phylogenetic analysis revealed that genome seg-6 of Indian isolate KMNO-7 (BTV21) clusters with isolates of BTV16 showing maximum nucleotide similarity of 97.6% with TUR/2000/02 isolate of BTV16, which is much more than it shows with any isolate of BTV21. KMNO-7 (BTV21) significantly diverged from original strain of BTV21, and is a reassortant strain having acquired seg-6 from an isolate of BTV16. This study provides some useful insights into the epidemiology of the bluetongue disease, and undermines serotyping on genome seg-6 basis.


Assuntos
Vírus Bluetongue/isolamento & purificação , Bluetongue/epidemiologia , RNA Viral/genética , Vírus Reordenados/isolamento & purificação , Animais , Bluetongue/virologia , Vírus Bluetongue/classificação , Vírus Bluetongue/genética , Análise por Conglomerados , Surtos de Doenças , Evolução Molecular , Índia/epidemiologia , Dados de Sequência Molecular , Filogenia , Vírus Reordenados/classificação , Vírus Reordenados/genética , Análise de Sequência de DNA , Homologia de Sequência , Ovinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA