Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115828

RESUMO

Pneumonia causes the deaths of over a million people worldwide each year, with most occurring in countries with limited access to expensive but effective diagnostic methods, e.g., chest X-rays. Physical examination, the other major established method of diagnosis, suffers from several drawbacks, most notably low accuracy and high interobserver error. We sought to address this diagnostic gap by developing a proof-of-concept non-invasive device to identify the accumulation of fluid in the lungs (consolidation) characteristic of pneumonia. This device, named Tabla after the percussive instrument of the same name, utilizes the technique of auscultatory percussion; a percussive input sound is sent through the chest and recorded with a digital stethoscope for analysis. Tabla analyzes differences in sound transmission through the chest at audible frequencies as a marker for lung consolidation. This paper presents preliminary data from five pneumonia patients and eight healthy subjects. We demonstrate 92.3% accuracy in distinguishing between healthy subjects and patients with pneumonia after data analysis with a K-nearest neighbors algorithm. This prototype device is low cost and simple to implement and may offer a rapid and inexpensive method for pneumonia diagnosis appropriate for general use and in areas with limited medical infrastructure.


Assuntos
Auscultação/instrumentação , Percussão/instrumentação , Pneumonia/diagnóstico , Pneumonia/economia , Adulto , Idoso , Feminino , Humanos , Pulmão/patologia , Masculino , Pneumonia/patologia , Estetoscópios
2.
Sci Rep ; 12(1): 3463, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35236896

RESUMO

Early detection of diseases such as COVID-19 could be a critical tool in reducing disease transmission by helping individuals recognize when they should self-isolate, seek testing, and obtain early medical intervention. Consumer wearable devices that continuously measure physiological metrics hold promise as tools for early illness detection. We gathered daily questionnaire data and physiological data using a consumer wearable (Oura Ring) from 63,153 participants, of whom 704 self-reported possible COVID-19 disease. We selected 73 of these 704 participants with reliable confirmation of COVID-19 by PCR testing and high-quality physiological data for algorithm training to identify onset of COVID-19 using machine learning classification. The algorithm identified COVID-19 an average of 2.75 days before participants sought diagnostic testing with a sensitivity of 82% and specificity of 63%. The receiving operating characteristic (ROC) area under the curve (AUC) was 0.819 (95% CI [0.809, 0.830]). Including continuous temperature yielded an AUC 4.9% higher than without this feature. For further validation, we obtained SARS CoV-2 antibody in a subset of participants and identified 10 additional participants who self-reported COVID-19 disease with antibody confirmation. The algorithm had an overall ROC AUC of 0.819 (95% CI [0.809, 0.830]), with a sensitivity of 90% and specificity of 80% in these additional participants. Finally, we observed substantial variation in accuracy based on age and biological sex. Findings highlight the importance of including temperature assessment, using continuous physiological features for alignment, and including diverse populations in algorithm development to optimize accuracy in COVID-19 detection from wearables.


Assuntos
Temperatura Corporal , COVID-19/diagnóstico , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , COVID-19/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/isolamento & purificação , Adulto Jovem
3.
Sci Rep ; 10(1): 21640, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33318528

RESUMO

Elevated core temperature constitutes an important biomarker for COVID-19 infection; however, no standards currently exist to monitor fever using wearable peripheral temperature sensors. Evidence that sensors could be used to develop fever monitoring capabilities would enable large-scale health-monitoring research and provide high-temporal resolution data on fever responses across heterogeneous populations. We launched the TemPredict study in March of 2020 to capture continuous physiological data, including peripheral temperature, from a commercially available wearable device during the novel coronavirus pandemic. We coupled these data with symptom reports and COVID-19 diagnosis data. Here we report findings from the first 50 subjects who reported COVID-19 infections. These cases provide the first evidence that illness-associated elevations in peripheral temperature are observable using wearable devices and correlate with self-reported fever. Our analyses support the hypothesis that wearable sensors can detect illnesses in the absence of symptom recognition. Finally, these data support the hypothesis that prediction of illness onset is possible using continuously generated physiological data collected by wearable sensors. Our findings should encourage further research into the role of wearable sensors in public health efforts aimed at illness detection, and underscore the importance of integrating temperature sensors into commercially available wearables.


Assuntos
COVID-19/diagnóstico , Febre/diagnóstico , Monitorização Fisiológica/instrumentação , Termometria/instrumentação , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Autorrelato , Telemedicina , Adulto Jovem
4.
IEEE Rev Biomed Eng ; 12: 221-239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30371387

RESUMO

Recent developments in sensor technology and computational analysis methods enable new strategies to measure and interpret lung acoustic signals that originate internally, such as breathing or vocal sounds, or are externally introduced, such as in chest percussion or airway insonification. A better understanding of these sounds has resulted in a new instrumentation that allows for highly accurate as well as portable options for measurement in the hospital, in the clinic, and even at home. This review outlines the instrumentation for acoustic stimulation and measurement of the lungs. We first review the fundamentals of acoustic lung signals and the pathophysiology of the diseases that these signals are used to detect. Then, we focus on different methods of measuring and creating signals that have been used in recent research for pulmonary disease diagnosis. These new methods, combined with signal processing and modeling techniques, lead to a reduction in noise and allow improved feature extraction and signal classification. We conclude by presenting the results of human subject studies taking advantage of both the instrumentation and signal processing tools to accurately diagnose common lung diseases. This paper emphasizes the active areas of research within modern lung acoustics and encourages the standardization of future work in this field.


Assuntos
Acústica , Pulmão/fisiopatologia , Ruído , Sons Respiratórios/fisiopatologia , Manuseio das Vias Aéreas , Humanos , Percussão , Processamento de Sinais Assistido por Computador , Voz
5.
IEEE J Transl Eng Health Med ; 6: 3200107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30310761

RESUMO

Accumulation of excess air and water in the lungs leads to breakdown of respiratory function and is a common cause of patient hospitalization. Compact and non-invasive methods to detect the changes in lung fluid accumulation can allow physicians to assess patients' respiratory conditions. In this paper, an acoustic transducer and a digital stethoscope system are proposed as a targeted solution for this clinical need. Alterations in the structure of the lungs lead to measurable changes which can be used to assess lung pathology. We standardize this procedure by sending a controlled signal through the lungs of six healthy subjects and six patients with lung disease. We extract mel-frequency cepstral coefficients and spectroid audio features, commonly used in classification for music retrieval, to characterize subjects as healthy or diseased. Using the [Formula: see text]-nearest neighbors algorithm, we demonstrate 91.7% accuracy in distinguishing between healthy subjects and patients with lung pathology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA