Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nature ; 598(7881): 495-499, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34497423

RESUMO

Plants deploy cell-surface and intracellular leucine rich-repeat domain (LRR) immune receptors to detect pathogens1. LRR receptor kinases and LRR receptor proteins at the plasma membrane recognize microorganism-derived molecules to elicit pattern-triggered immunity (PTI), whereas nucleotide-binding LRR proteins detect microbial effectors inside cells to confer effector-triggered immunity (ETI). Although PTI and ETI are initiated in different host cell compartments, they rely on the transcriptional activation of similar sets of genes2, suggesting pathway convergence upstream of nuclear events. Here we report that PTI triggered by the Arabidopsis LRR receptor protein RLP23 requires signalling-competent dimers of the lipase-like proteins EDS1 and PAD4, and of ADR1 family helper nucleotide-binding LRRs, which are all components of ETI. The cell-surface LRR receptor kinase SOBIR1 links RLP23 with EDS1, PAD4 and ADR1 proteins, suggesting the formation of supramolecular complexes containing PTI receptors and transducers at the inner side of the plasma membrane. We detected similar evolutionary patterns in LRR receptor protein and nucleotide-binding LRR genes across Arabidopsis accessions; overall higher levels of variation in LRR receptor proteins than in LRR receptor kinases are consistent with distinct roles of these two receptor families in plant immunity. We propose that the EDS1-PAD4-ADR1 node is a convergence point for defence signalling cascades, activated by both surface-resident and intracellular LRR receptors, in conferring pathogen immunity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Hidrolases de Éster Carboxílico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Arabidopsis/química , Hidrolases de Éster Carboxílico/química , Proteínas de Ligação a DNA/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo
2.
Plant Physiol ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935533

RESUMO

Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was down-regulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast two-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and shed lights on a new mechanism by which a V-ATPase is involved in plant antiviral defense.

3.
PLoS Pathog ; 18(1): e1010257, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35073383

RESUMO

Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection.


Assuntos
Endossomos/metabolismo , Interações Hospedeiro-Patógeno/fisiologia , Potyvirus/patogenicidade , Proteínas de Transporte Vesicular/metabolismo , Compartimentos de Replicação Viral/metabolismo , Humanos , Doenças das Plantas/microbiologia , Replicação Viral/fisiologia
4.
Plant Dis ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38568794

RESUMO

Green-stem forsythia (Forsythia viridissima), also known as golden bell, is cultivated widely in China as an early spring flowering shrub. In July 2020, yellow or white vein clearing symptoms on leaves were observed in approximate 15% golden bell plants along a landscape river in Ningbo city, Zhejiang province, China. Symptomatic leaves from six different plants were collected and pooled. Total RNA was extracted from about 200 mg pooled sample using TRIzol Reagent (Invitrogen, Carlsbad, USA) and used for high-throughput sequencing (HTS). The cDNA library was constructed using a TruSeq RNA Sample Preparation Kit (Illumina) and an Illumina NovaSeq 6000 platform was utilized to yield 150 nt paired-end reads. CLC Genomic Workbench 11 (QIAGEN) with default parameters were used for data analysis. A total of 41,604,174 paired-end reads were obtained, and 156,853 contigs (16 - 26,665 nt) were generated de novo and compared with sequences in the NCBI nt and nr database using BLASTn and BLASTx, respectively. A total of 197,277 reads were mapped to the citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) genome with an average coverage of 3191×. A contig of 8783 nt (excluding the poly(A) tail) was aligned to CLBV isolate Vib (accession No. OP751940) by BLASTn with the highest nt sequence identity of 99.7% and 99% query coverage, suggesting that the samples were infected with CLBV (Myung-Hwi Kim et al. 2023). No other virus was detected by this analysis. Subsequently, leaves of the six plants collected above, three plants with mild chlorotic symptoms and three plants without obvious symptoms were tested separately by RT-PCR and all were positive for CLBV. Sap from multiple symptomatic F. viridissima leaves was mechanically inoculated to Nicotiana benthamiana, N. tabacum and Datura stramonium in sextuplicate, but after two months, none of the inoculated plants had obvious symptoms and all of them tested negative for CLBV using RT-PCR. To determine the genome sequence of CLBV present in F. viridissima, a single sample from one plant was selected for genome validtion. The contig sequence was confirmed by Sanger sequencing of RT-PCR products amplified using CLBV-specific primers, and the 5' terminal sequence of the virus was determined using a commercial SUPERSWITCH RACE cDNA Synthesis Kit (Tiosbio, Beijing, China). The complete genomic sequence of CLBV isolated from F. viridissima was 8787 nts long, excluding the poly(A) tail, has the expected three predicted ORFs and was deposited in the GenBank database (accession no. OR766026). Phylogenetic analysis of different CLBV genome sequences from fruit trees and other hosts in GenBank using MEGA11 showed that the golden bell isolate was most closely related to isolate Vib (OP751940) from Viburnum lentago in South Korea, with which it was almost identical (99.7% complete nt sequence identity and >99% aa sequence identity in each of the three ORFs). Ten viruses have been previously reported from Forsythia spp. (Kaminska, M. 1985; Lee et al. 1997), but this is the first report of CLBV in this host. CLBV mainly infects citrus, kiwifruit and apple causing mosaic, chlorosis or yellow vein clearing symptoms, however, bud union disorder was observed in 'Nagami' kumquat infected by CLBV, which caused serious production losses (Cao et al. 2017; Li et al. 2018; Liu et al. 2019; Galipienso et al. 2001). Therefore, further investigation is needed to assess if F. viridissima can be an intermediate host to transfer CLBV to other crops.

5.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38612822

RESUMO

Tomato brown rugose fruit virus (ToBRFV) is a newly-emerging tobamovirus which was first reported on tomatoes in Israel and Jordan, and which has now spread rapidly in Asia, Europe, North America, and Africa. ToBRFV can overcome the resistance to other tobamoviruses conferred by tomato Tm-1, Tm-2, and Tm-22 genes, and it has seriously affected global crop production. The rapid and comprehensive transcription reprogramming of host plant cells is the key to resisting virus attack, but there have been no studies of the transcriptome changes induced by ToBRFV in tomatoes. Here, we made a comparative transcriptome analysis between tomato leaves infected with ToBRFV for 21 days and those mock-inoculated as controls. A total of 522 differentially expressed genes were identified after ToBRFV infection, of which 270 were up-regulated and 252 were down-regulated. Functional analysis showed that DEGs were involved in biological processes such as response to wounding, response to stress, protein folding, and defense response. Ten DEGs were selected and verified by qRT-PCR, confirming the reliability of the high-throughput sequencing data. These results provide candidate genes or signal pathways for the response of tomato leaves to ToBRFV infection.


Assuntos
Solanum lycopersicum , Tobamovirus , Viroses , Solanum lycopersicum/genética , Frutas , Reprodutibilidade dos Testes , Perfilação da Expressão Gênica , Transcriptoma
6.
PLoS Pathog ; 17(9): e1009963, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34587220

RESUMO

Autophagy is induced by viral infection and has antiviral functions in plants, but the underlying mechanism is poorly understood. We previously identified a viral small interfering RNA (vsiRNA) derived from rice stripe virus (RSV) RNA4 that contributes to the leaf-twisting and stunting symptoms caused by this virus by targeting the host eukaryotic translation initiation factor 4A (eIF4A) mRNA for silencing. In addition, autophagy plays antiviral roles by degrading RSV p3 protein, a suppressor of RNA silencing. Here, we demonstrate that eIF4A acts as a negative regulator of autophagy in Nicotiana benthamiana. Silencing of NbeIF4A activated autophagy and inhibited RSV infection by facilitating autophagic degradation of p3. Further analysis showed that NbeIF4A interacts with NbATG5 and interferes with its interaction with ATG12. Overexpression of NbeIF4A suppressed NbATG5-activated autophagy. Moreover, expression of vsiRNA-4A, which targets NbeIF4A mRNA for cleavage, induced autophagy by silencing NbeIF4A. Finally, we demonstrate that eIF4A from rice, the natural host of RSV, also interacts with OsATG5 and suppresses OsATG5-activated autophagy, pointing to the conserved function of eIF4A as a negative regulator of antiviral autophagy. Taken together, these results reveal that eIF4A negatively regulates antiviral autophagy by interacting with ATG5 and that its mRNA is recognized by a virus-derived siRNA, resulting in its silencing, which induces autophagy against viral infection.


Assuntos
Proteína 5 Relacionada à Autofagia/metabolismo , Autofagia/fisiologia , Fatores de Iniciação em Eucariotos/metabolismo , Imunidade Vegetal/fisiologia , RNA Interferente Pequeno/metabolismo , Proteínas de Plantas/metabolismo , Tenuivirus , Nicotiana/virologia
7.
PLoS Pathog ; 17(12): e1010108, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34852025

RESUMO

Jasmonic acid (JA) is a crucial hormone in plant antiviral immunity. Increasing evidence shows that viruses counter this host immune response by interfering with JA biosynthesis and signaling. However, the mechanism by which viruses affect JA biosynthesis is still largely unexplored. Here, we show that a highly conserved chloroplast protein cpSRP54 was downregulated in Nicotiana benthamiana infected by turnip mosaic virus (TuMV). Its silencing facilitated TuMV infection. Furthermore, cpSRP54 interacted with allene oxide cyclases (AOCs), key JA biosynthesis enzymes, and was responsible for delivering AOCs onto the thylakoid membrane (TM). Interestingly, TuMV P1 protein interacted with cpSRP54 and mediated its degradation via the 26S proteosome and autophagy pathways. The results suggest that TuMV has evolved a strategy, through the inhibition of cpSRP54 and its delivery of AOCs to the TM, to suppress JA biosynthesis and enhance viral infection. Interaction between cpSRP54 and AOCs was shown to be conserved in Arabidopsis and rice, while cpSRP54 also interacted with, and was degraded by, pepper mild mottle virus (PMMoV) 126 kDa protein and potato virus X (PVX) p25 protein, indicating that suppression of cpSRP54 may be a common mechanism used by viruses to counter the antiviral JA pathway.


Assuntos
Proteínas de Cloroplastos/metabolismo , Ciclopentanos/metabolismo , Oxirredutases Intramoleculares/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/virologia , Potyvirus/metabolismo , Tilacoides/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Imunidade Vegetal , Viroses/virologia
8.
Arch Virol ; 168(11): 281, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37889350

RESUMO

A novel mitovirus was detected in taro (Colocasia esculenta) growing in Ningbo, China. The complete genome sequence of Colocasia esculenta associated mitovirus 1 (CeaMV1) was determined by next-generation sequencing combined with RT-PCR and RACE. The genome is 2921 nucleotides long and contains a single ORF encoding a putative RNA-dependent RNA polymerase. Homology searches and phylogenetic analysis suggested that CeaMV1 is a member of a new species in the genus Duamitovirus. This is the first report of a member of the family Mitoviridae associated with taro.


Assuntos
Colocasia , Vírus de RNA , Filogenia , Genoma Viral , Vírus de RNA/genética , RNA Polimerase Dependente de RNA/genética
9.
Arch Virol ; 168(6): 167, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37227509

RESUMO

The complete genome of a new virus belonging to the family Betaflexiviridae was identified in garlic and sequenced by next-generation sequencing and reverse transcription PCR. The complete RNA genome (GenBank accession number OP021693) is 8191 nucleotides in length, excluding the 3' poly(A) tail, and contains five open reading frames (ORFs). These open reading frames encode the viral replicase, triple gene block, and coat protein, and the genome organization is typical of members of the subfamily Quinvirinae. The virus has been tentatively named "garlic yellow curl virus" (GYCV). Phylogenetic analysis suggested that it represents an independent evolutionary lineage in the subfamily, clustering with the currently unclassified garlic yellow mosaic associated virus (GYMaV) and peony betaflexivirus 1 (PeV1). Differences between the phylogenies inferred for the replicase and coat protein indicate that the new virus does not belong to any established genus of the family Betaflexiviridae. This is the first report of GYCV in China.


Assuntos
Flexiviridae , Alho , Alho/genética , Filogenia , Genoma Viral , Flexiviridae/genética , RNA , RNA Mensageiro , Fases de Leitura Aberta , RNA Viral/genética , Doenças das Plantas
10.
Arch Virol ; 168(5): 137, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043037

RESUMO

The complete genomic sequence of a waikavirus from Chinese hackberry in Zhejiang province, China, named "hackberry virus A" (HVA), was determined using high-throughput sequencing (HTS) combined with reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The bicistronic genomic RNA of HVA was found to consist of 12,691 nucleotides (nt), excluding the 3'-terminal poly(A) tail, and to encode a large polyprotein of 3783 amino acids (aa) and an additional 10.3-kDa protein. The aa sequences of the Pro-Pol and the CP regions of this virus share 39.8-44.2% and 25.5-36.4% identity, respectively, with currently known waikaviruses. These values are significantly below the current species demarcation threshold (< 75% and < 80% aa identity for the CP and Pro-Pol region, respectively) for the family Secoviridae, indicating that HVA represents a new species in the genus Waikavirus. This is the first report of a virus infecting Chinese hackberry.


Assuntos
Waikavirus , Waikavirus/genética , Sequência de Bases , Genoma Viral , Filogenia , Doenças das Plantas , RNA Viral/genética
11.
PLoS Pathog ; 16(8): e1008780, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32866188

RESUMO

Ubiquitin like protein 5 (UBL5) interacts with other proteins to regulate their function but differs from ubiquitin and other UBLs because it does not form covalent conjugates. Ubiquitin and most UBLs mediate the degradation of target proteins through the 26S proteasome but it is not known if UBL5 can also do that. Here we found that the UBL5s of rice and Nicotiana benthamiana interacted with rice stripe virus (RSV) p3 protein. Silencing of NbUBL5s in N. benthamiana facilitated RSV infection, while UBL5 overexpression conferred resistance to RSV in both N. benthamiana and rice. Further analysis showed that NbUBL5.1 impaired the function of p3 as a suppressor of silencing by degrading it through the 26S proteasome. NbUBL5.1 and OsUBL5 interacted with RPN10 and RPN13, the receptors of ubiquitin in the 26S proteasome. Furthermore, silencing of NbRPN10 or NbRPN13 compromised the degradation of p3 mediated by NbUBL5.1. Together, the results suggest that UBL5 mediates the degradation of RSV p3 protein through the 26S proteasome, a previously unreported plant defense strategy against RSV infection.


Assuntos
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Repressoras/metabolismo , Tenuivirus/metabolismo , Ubiquitinas/metabolismo , Proteínas Virais/metabolismo , Proteínas de Plantas/genética , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Repressoras/genética , Tenuivirus/genética , Nicotiana/genética , Ubiquitinas/genética , Proteínas Virais/genética
12.
BMC Plant Biol ; 21(1): 425, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34537002

RESUMO

BACKGROUND: The Catharanthus roseus RLK1-like kinase (CrRLK1L) is a subfamily of the RLK gene family, and members are sensors of cell wall integrity and regulators of cell polarity growth. Recent studies have also shown that members of this subfamily are involved in plant immunity. Nicotiana benthamiana is a model plant widely used in the study of plant-pathogen interactions. However, the members of the NbCrRLK1L subfamily and their response to pathogens have not been reported. RESULTS: In this study, a total of 31 CrRLK1L members were identified in the N. benthamiana genome, and these can be divided into 6 phylogenetic groups (I-VI). The members in each group have similar exon-intron structures and conserved motifs. NbCrRLK1Ls were predicted to be regulated by cis-acting elements such as STRE, TCA, ABRE, etc., and to be the target of transcription factors such as Dof and MYB. The expression profiles of the 16 selected NbCrRLK1Ls were determined by quantitative PCR. Most NbCrRLK1Ls were highly expressed in leaves but there were different and diverse expression patterns in other tissues. Inoculation with the bacterium Pseudomonas syringae or with Turnip mosaic virus significantly altered the transcript levels of the tested genes, suggesting that NbCrRLK1Ls may be involved in the response to pathogens. CONCLUSIONS: This study systematically identified the CrRLK1L members in N. benthamiana, and analyzed their tissue-specific expression and gene expression profiles in response to different pathogens and two pathogens associated molecular patterns (PAMPs). This research lays the foundation for exploring the function of NbCrRLK1Ls in plant-microbe interactions.


Assuntos
Catharanthus/genética , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas Quinases/genética , Catharanthus/enzimologia , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Interações Hospedeiro-Patógeno , Filogenia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/virologia , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas Quinases/metabolismo , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia , Nicotiana/virologia , Fatores de Transcrição/genética
13.
New Phytol ; 232(1): 264-278, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34157161

RESUMO

Receptor-like cytoplasmic kinase subfamily VII (RLCK-VII) proteins are the central immune kinases in plant pattern-recognition receptor (PRR) complexes, and they orchestrate a complex array of defense responses against bacterial and fungal pathogens. However, the role of RLCK-VII in plant-oomycete pathogen interactions has not been established. Phytophthora capsici is a notorious oomycete pathogen that infects many agriculturally important vegetables. Here, we report the identification of RXLR25, an RXLR effector that is required for the virulence of P. capsici. In planta expression of RXLR25 significantly enhanced plants' susceptibility to Phytophthora pathogens. Microbial pattern-induced immune activation in Arabidopsis was severely impaired by RXLR25. We further showed that RXLR25 interacts with RLCK-VII proteins. Using nine rlck-vii high-order mutants, we observed that RLCK-VII-6 and RLCK-VII-8 members are required for resistance to P. capsici. The RLCK-VII-6 members are specifically required for Phytophthora culture filtrate (CF)-induced immune responses. RXLR25 directly targets RLCK-VII proteins such as BIK1, PBL8, and PBL17 and inhibits pattern-induced phosphorylation of RLCK-VIIs to suppress downstream immune responses. This study identified a key virulence factor for P. capsici, and the results revealed the importance of RLCK-VII proteins in plant-oomycete interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Phytophthora infestans , Proteínas de Arabidopsis/genética , Doenças das Plantas , Imunidade Vegetal , Proteínas Serina-Treonina Quinases
14.
Plant Cell Environ ; 44(11): 3681-3699, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34331318

RESUMO

Chloroplasts play crucial roles in plant defence against viral infection. We now report that chloroplast NADH dehydrogenase-like (NDH) complex M subunit gene (NdhM) was first up-regulated and then down-regulated in turnip mosaic virus (TuMV)-infected N. benthamiana. NbNdhM-silenced plants were more susceptible to TuMV, whereas overexpression of NbNdhM inhibited TuMV accumulation. Overexpression of NbNdhM significantly induced the clustering of chloroplasts around the nuclei and disturbing this clustering facilitated TuMV infection, suggesting that the clustering mediated by NbNdhM is a defence against TuMV. It was then shown that NbNdhM interacted with TuMV VPg, and that the NdhMs of different plant species interacted with the proteins of different viruses, implying that NdhM may be a common target of viruses. In the presence of TuMV VPg, NbNdhM, which is normally localized in the nucleus, chloroplasts, cell periphery and chloroplast stromules, colocalized with VPg at the nucleus and nucleolus, with significantly increased nuclear accumulation, while NbNdhM-mediated chloroplast clustering was significantly impaired. This study therefore indicates that NbNdhM has a defensive role in TuMV infection probably by inducing the perinuclear clustering of chloroplasts, and that the localization of NbNdhM is altered by its interaction with TuMV VPg in a way that promotes virus infection.


Assuntos
Cloroplastos/virologia , Nicotiana/virologia , Doenças das Plantas/virologia , Potyvirus/fisiologia , Núcleo Celular/virologia
15.
Plant Cell ; 30(7): 1543-1561, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29871986

RESUMO

Plants deploy numerous cell surface-localized pattern-recognition receptors (PRRs) to perceive host- and microbe-derived molecular patterns that are specifically released during infection and activate defense responses. The activation of the mitogen-activated protein kinases MPK3, MPK4, and MPK6 (MPK3/4/6) is a hallmark of immune system activation by all known PRRs and is crucial for establishing disease resistance. The MAP kinase kinase kinase (MAPKKK) MEKK1 controls MPK4 activation, but the MAPKKKs responsible for MPK3/6 activation downstream of diverse PRRs and how the perception of diverse molecular patterns leads to the activation of MAPKKKs remain elusive. Here, we show that two highly related MAPKKKs, MAPKKK3 and MAPKKK5, mediate MPK3/6 activation by at least four PRRs and confer resistance to bacterial and fungal pathogens in Arabidopsis thaliana The receptor-like cytoplasmic kinases VII (RLCK VII), which act downstream of PRRs, directly phosphorylate MAPKKK5 Ser-599, which is required for pattern-triggered MPK3/6 activation, defense gene expression, and disease resistance. Surprisingly, MPK6 further phosphorylates MAPKKK5 Ser-682 and Ser-692 to enhance MPK3/6 activation and disease resistance, pointing to a positive feedback mechanism. Finally, MEKK1 Ser-603 is phosphorylated by both RLCK VII and MPK4, which is required for pattern-triggered MPK4 activation. These findings illustrate central mechanisms by which multiple PRRs activate MAPK cascades and disease resistance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Sistema de Sinalização das MAP Quinases/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/genética , Fosforilação/fisiologia , Imunidade Vegetal/genética , Imunidade Vegetal/fisiologia , Receptores de Reconhecimento de Padrão/genética
16.
Arch Virol ; 166(3): 983-986, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33439325

RESUMO

The complete genome sequence of a novel foveavirus identified in garlic (Allium sativum L.) in China was determined using RNA-seq, reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The entire genomic RNA (GenBank accession MT981417) is 8748 nucleotides long excluding the 3'-terminal poly(A) tail and contains five open reading frames (ORFs). These ORFs encode the viral replicase, a triple gene block, and a coat protein. The virus was tentatively named "garlic yellow stripe associated virus" (GarYSaV). Pairwise comparisons of protein sequences show that GarYSaV encodes proteins that share less than 47% identity with those of other foveaviruses, suggesting that it represents a new species in the genus. Phylogenetic analysis of amino acid sequences of the replicase and CP confirm that GarYSaV is a member of the genus Foveavirus. To our knowledge, this is the first report of a foveavirus in a monocot plant.


Assuntos
Flexiviridae/genética , Alho/virologia , Genoma Viral/genética , RNA Viral/genética , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , China , Flexiviridae/classificação , Flexiviridae/isolamento & purificação , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/virologia , Sequenciamento Completo do Genoma/métodos
17.
Arch Virol ; 166(12): 3477-3481, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608526

RESUMO

The complete genomic sequence of a novel ilarvirus from Eleocharis dulcis, tentatively named "water chestnut virus A" (WCVA), was determined using next-generation sequencing (NGS) combined with reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) PCR. The three genomic RNA components of WCVA were 3578 (RNA1), 2873 (RNA2), and 2073 (RNA3) nucleotides long, with four predicted open reading frames containing conserved domains and motifs typical of ilarviruses. Phylogenetic analysis of each predicted protein consistently placed WCVA in subgroup 4 of the genus Ilarvirus, together with prune dwarf virus, viola white distortion associated virus, Fragaria chiloensis latent virus, and potato yellowing virus. The genetic distances and lack of serological reaction to antisera against other ilarviruses suggest that WCVA is a novel member of the genus.


Assuntos
Eleocharis , Ilarvirus , Sequência de Bases , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Ilarvirus/genética , Fases de Leitura Aberta , Filogenia , RNA Viral/genética
18.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008895

RESUMO

Hyperosmolality and various other stimuli can trigger an increase in cytoplasmic-free calcium concentration ([Ca2+]cyt). Members of the Arabidopsis thaliana (L.) reduced hyperosmolality-gated calcium-permeable channels (OSCA) gene family are reported to be involved in sensing extracellular changes to trigger hyperosmolality-induced [Ca2+]cyt increases and controlling stomatal closure during immune signaling. Wheat (Triticum aestivum L.) is a very important food crop, but there are few studies of its OSCA gene family members. In this study, 42 OSCA members were identified in the wheat genome, and phylogenetic analysis can divide them into four clades. The members of each clade have similar gene structures, conserved motifs, and domains. TaOSCA genes were predicted to be regulated by cis-acting elements such as STRE, MBS, DRE1, ABRE, etc. Quantitative PCR results showed that they have different expression patterns in different tissues. The expression profiles of 15 selected TaOSCAs were examined after PEG (polyethylene glycol), NaCl, and ABA (abscisic acid) treatment. All 15 TaOSCA members responded to PEG treatment, while TaOSCA12/-39 responded simultaneously to PEG and ABA. This study informs research into the biological function and evolution of TaOSCA and lays the foundation for the breeding and genetic improvement of wheat.


Assuntos
Canais de Cálcio , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estresse Fisiológico/genética , Triticum , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Triticum/genética , Triticum/metabolismo
19.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638720

RESUMO

Brassinazole-resistant (BZR) family genes encode plant-specific transcription factors (TFs), play essential roles in the regulation of plant growth and development, and have multiple stress-resistance functions. Nicotiana benthamiana is a model plant widely used in basic research. However, members of the BZR family in N. benthamiana have not been identified, and little is known about their function in abiotic stress. In this study, a total of 14 BZR members were identified in the N. benthamiana genome, which could be divided into four groups according to a phylogenetic tree. NbBZRs have similar exon-intron structures and conserved motifs, and may be regulated by cis-acting elements such as STRE, TCA, and ARE, etc. Organ-specific expression analysis showed that NbBZR members have different and diverse expression patterns in different tissues, and most of the members are expressed in roots, stems, and leaves. The analysis of the expression patterns in response to different abiotic stresses showed that all the tested NbBZR members showed a significant down-regulation after drought treatment. Many NbBZR genes also responded in various ways to cold, heat and salt stress treatments. The results imply that NbBZRs have multiple functions related to stress resistance.


Assuntos
Proteínas de Ligação a DNA , Regulação da Expressão Gênica de Plantas , Família Multigênica , Nicotiana , Proteínas de Plantas , Fatores de Transcrição , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Nicotiana/genética , Nicotiana/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética
20.
BMC Plant Biol ; 20(1): 305, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611364

RESUMO

BACKGROUND: Nicotiana benthamiana is widely used as a model plant to study plant-pathogen interactions. Fasciclin-like arabinogalactan proteins (FLAs), a subclass of arabinogalactan proteins (AGPs), participate in mediating plant growth, development and response to abiotic stress. However, the members of FLAs in N. benthamiana and their response to plant pathogens are unknown. RESULTS: 38 NbFLAs were identified from a genome-wide study. NbFLAs could be divided into four subclasses, and their gene structure and motif composition were conserved in each subclass. NbFLAs may be regulated by cis-acting elements such as STRE and MBS, and may be the targets of transcription factors like C2H2. Quantitative real time polymerase chain reaction (RT-qPCR) results showed that selected NbFLAs were differentially expressed in different tissues. All of the selected NbFLAs were significantly downregulated following infection by turnip mosaic virus (TuMV) and most of them also by Pseudomonas syringae pv tomato strain DC3000 (Pst DC3000), suggesting possible roles in response to pathogenic infection. CONCLUSIONS: This study systematically identified FLAs in N. benthamiana, and indicates their potential roles in response to biotic stress. The identification of NbFLAs will facilitate further studies of their role in plant immunity in N. benthamiana.


Assuntos
Galactanos/genética , Nicotiana/genética , Motivos de Aminoácidos , Galactanos/química , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudo de Associação Genômica Ampla , Família Multigênica , Filogenia , Estresse Fisiológico , Fatores de Transcrição/química , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA