RESUMO
Variants of uncertain significance (VUSs) in BRCA2 are a common result of hereditary cancer genetic testing. While more than 4,000 unique VUSs, comprised of missense or intronic variants, have been identified in BRCA2, the few missense variants now classified clinically as pathogenic or likely pathogenic are predominantly located in the region encoding the C-terminal DNA binding domain (DBD). We report on functional evaluation of the influence of 462 BRCA2 missense variants affecting the DBD on DNA repair activity of BRCA2 using a homology-directed DNA double-strand break repair assay. Of these, 137 were functionally abnormal, 313 were functionally normal, and 12 demonstrated intermediate function. Comparisons with other functional studies of BRCA2 missense variants yielded strong correlations. Sequence-based in silico prediction models had high sensitivity, but limited specificity, relative to the homology-directed repair assay. Combining the functional results with clinical and genetic data in an American College of Medical Genetics (ACMG)/Association for Molecular Pathology (AMP)-like variant classification framework from a clinical testing laboratory, after excluding known splicing variants and functionally intermediate variants, classified 431 of 442 (97.5%) missense variants (129 as pathogenic/likely pathogenic and 302 as benign/likely benign). Functionally abnormal variants classified as pathogenic by ACMG/AMP rules were associated with a slightly lower risk of breast cancer (odds ratio [OR] 5.15, 95% confidence interval [CI] 3.43-7.83) than BRCA2 DBD protein truncating variants (OR 8.56, 95% CI 6.03-12.36). Overall, functional studies of BRCA2 variants using validated assays substantially improved the variant classification yield from ACMG/AMP models and are expected to improve clinical management of many individuals found to harbor germline BRCA2 missense VUS.
Assuntos
Neoplasias da Mama , Predisposição Genética para Doença , Humanos , Feminino , Proteína BRCA2/genética , Testes Genéticos , Mutação de Sentido Incorreto/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Células Germinativas/patologia , DNARESUMO
Adequate control of type I error rates will be necessary in the increasing genome-wide search for interactive effects on complex traits. After observing unexpected variability in type I error rates from SNP-by-genome interaction scans, we sought to characterize this variability and test the ability of heteroskedasticity-consistent standard errors to correct it. We performed 81 SNP-by-genome interaction scans using a product-term model on quantitative traits in a sample of 1,053 unrelated European Americans from the NHLBI Family Heart Study, and additional scans on five simulated datasets. We found that the interaction-term genomic inflation factor (lambda) showed inflation and deflation that varied with sample size and allele frequency; that similar lambda variation occurred in the absence of population substructure; and that lambda was strongly related to heteroskedasticity but not to minor non-normality of phenotypes. Heteroskedasticity-consistent standard errors narrowed the range of lambda, with HC3 outperforming HC0, but in individual scans tended to create new P-value outliers related to sparse two-locus genotype classes. We explain the lambda variation as a result of non-independence of test statistics coupled with stochastic biases in test statistics due to a failure of the test to reach asymptotic properties. We propose that one way to interpret lambda is by comparison to an empirical distribution generated from data simulated under the null hypothesis and without population substructure. We further conclude that the interaction-term lambda should not be used to adjust test statistics and that heteroskedasticity-consistent standard errors come with limitations that may outweigh their benefits in this setting.
Assuntos
Estudo de Associação Genômica Ampla/métodos , Cardiopatias/genética , Polimorfismo de Nucleotídeo Único/genética , Característica Quantitativa Herdável , População Branca/genética , Frequência do Gene , Genoma/genética , Genótipo , Humanos , Modelos Genéticos , FenótipoRESUMO
The pathogen Mycobacterium tuberculosis expresses two chaperonins, one (Cpn60.1) dispensable and one (Cpn60.2) essential. These proteins have been reported not to form oligomers despite the fact that oligomerization of chaperonins is regarded as essential for their function. We show here that the Cpn60.2 homologue from Mycobacterium smegmatis also fails to oligomerize under standard conditions. However, we also show that the Cpn60.2 proteins from both organisms can replace the essential groEL gene of Escherichia coli, and that they can function with E. coli GroES cochaperonin, as well as with their cognate cochaperonin proteins, strongly implying that they form oligomers in vivo. We show that the Cpn60.1 proteins, but not the Cpn60.2 proteins, can complement for loss of the M. smegmatis cpn60.1 gene. We investigated the oligomerization of the Cpn60.2 proteins using analytical ultracentrifugation and mass spectroscopy. Both form monomers under standard conditions, but they form higher order oligomers in the presence of kosmotropes and ADP or ATP. Under these conditions, their ATPase activity is significantly enhanced. We conclude that the essential mycobacterial chaperonins, while unstable compared to many other bacterial chaperonins, do act as oligomers in vivo, and that there has been specialization of function of the mycobacterial chaperonins following gene duplication.
Assuntos
Proteínas de Bactérias/metabolismo , Chaperoninas/metabolismo , Mycobacterium/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Chaperoninas/genética , Espectrometria de Massas , Mycobacterium/genética , Multimerização Proteica , UltracentrifugaçãoRESUMO
Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to breast, ovarian, prostate and pancreatic cancer. However, variants of uncertain significance (VUS) (n>4000) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants. Here we report on comprehensive saturation genome editing-based functional characterization of 97% of all possible single nucleotide variants (SNVs) in the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants that is encoded by exons 15 to 26. The assay was based on deep sequence analysis of surviving endogenously targeted haploid cells. A total of 7013 SNVs were characterized as functionally abnormal (n=955), intermediate/uncertain, or functionally normal (n=5224) based on 95% agreement with ClinVar known pathogenic and benign standards. Results were validated relative to batches of nonsense and synonymous variants and variants evaluated using a homology directed repair (HDR) functional assay. Breast cancer case-control association studies showed that pooled SNVs encoding functionally abnormal missense variants were associated with increased risk of breast cancer (odds ratio (OR) 3.89, 95%CI: 2.77-5.51). In addition, 86% of tumors associated with abnormal missense SNVs displayed loss of heterozygosity (LOH), whereas 26% of tumors with normal variants had LOH. The functional data were added to other sources of information in a ClinGen/ACMG/AMP-like model and 700 functionally abnormal SNVs, including 220 missense SNVs, were classified as pathogenic or likely pathogenic, while 4862 functionally normal SNVs, including 3084 missense SNVs, were classified as benign or likely benign. These classified variants can now be used for risk assessment and clinical care of variant carriers and the remaining functional scores can be used directly for clinical classification and interpretation of many additional variants. Summary: Germline BRCA2 loss-of function (LOF) variants identified by clinical genetic testing predispose to several types of cancer. However, variants of uncertain significance (VUS) limit the clinical use of testing results. Thus, there is an urgent need for functional characterization and clinical classification of all BRCA2 variants to facilitate current and future clinical management of individuals with these variants. Here we show the results from a saturation genome editing (SGE) and functional analysis of all possible single nucleotide variants (SNVs) from exons 15 to 26 that encode the BRCA2 DNA Binding Domain hotspot for pathogenic missense variants. The assay was based on deep sequence analysis of surviving endogenously targeted human haploid HAP1 cells. The assay was calibrated relative to ClinVar known pathogenic and benign missense standards and 95% prevalence thresholds for functionally abnormal and normal variants were identified. Thresholds were validated based on nonsense and synonymous variants. SNVs encoding functionally abnormal missense variants were associated with increased risks of breast and ovarian cancer. The functional assay results were integrated into a ClinGen/ACMG/AMP-like model for clinical classification of the majority of BRCA2 SNVs as pathogenic/likely pathogenic or benign/likely benign. The classified variants can be used for improved clinical management of variant carriers.
RESUMO
The DNA binding activity of the transcriptional regulator activator protein-1 shows considerable promise as a target in cancer therapy. A number of different strategies have been employed to inhibit the function of this protein with promise having been demonstrated both in vitro and in vivo. Peptide-based therapeutics have received renewed interest in the last few years, and a number of 37-amino acid peptides capable of binding to the coiled coil dimerization domain of Jun and Fos have been derived. Here, we demonstrate how truncation and semi-rational library design, followed by protein-fragment complementation, can be used to produce a leucine zipper binding peptide by iterative means. To this end, we have implemented this strategy on the FosW peptide to produce 4hFosW. This peptide is truncated by four residues with comparably favorable binding properties and demonstrates the possibility to design progressively shorter peptides to serve as leucine zipper antagonists while retaining many of the key features of the parent peptide. Whether or not the necessity for low molecular weight antagonists is required from the perspective of druggability and efficacy is subject to debate. However, antagonists of reduced length are worthy of perusal from the point of view of synthetic cost as well as identifying the smallest functional unit that is required for binding.
Assuntos
Peptídeos/química , Proteínas Proto-Oncogênicas c-jun/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-jun/química , Humanos , Zíper de Leucina , Peptídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fos/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Viral load (VL) quantification is considered essential for determining antiretroviral treatment (ART) success in resource-rich countries. However, it is not widely available in resource-limited settings where the burden of human immunodeficiency virus infection is greatest. In the absence of VL monitoring, switches to second-line ART are based on World Health Organization (WHO) clinical or immunologic failure criteria. METHODS: We assessed the performance of CD4 cell criteria to predict virologic outcomes in a large ART program in Nigeria. Laboratory monitoring consists of CD4 cell count and VL at baseline, then every 6 months. Failure was defined as 2 consecutive VLs >1000 copies/mL after at least 6 months of ART. Virologic outcomes were compared with the 3 WHO-defined immunologic failure criteria. RESULTS: A total of 9690 patients were included in the analysis (median follow-up, 33.2 months). A total of 1225 patients experienced failure by both immunologic and virologic criteria, 872 by virologic criteria only, and 1897 by immunologic criteria only. The sensitivity of CD4 cell criteria to detect viral failure was 58%, specificity was 75%, and the positive-predictive value was 39%. For patients with both virologic and immunologic failure, VL criteria identified failure significantly earlier than CD4 cell criteria (median, 10.4 vs 15.6 months; P < .0001). CONCLUSIONS: Because of the low sensitivity of immunologic criteria, a substantial number of failures are missed, potentially resulting in accumulation of resistance mutations. In addition, specificity and predictive values are low, which may result in large numbers of unnecessary ART switches. Monitoring solely by immunologic criteria may result in increased costs because of excess switches to more expensive ART and development of drug-resistant virus.
Assuntos
Fármacos Anti-HIV/administração & dosagem , Monitoramento de Medicamentos/métodos , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Adulto , Contagem de Linfócito CD4 , Países em Desenvolvimento , Feminino , Infecções por HIV/diagnóstico , Infecções por HIV/virologia , Humanos , Estudos Longitudinais , Masculino , Nigéria , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Resultado do Tratamento , Carga ViralRESUMO
Protein-based therapeutics feature large interacting surfaces. Protein folding endows structural stability to localised surface epitopes, imparting high affinity and target specificity upon interactions with binding partners. However, short synthetic peptides with sequences corresponding to such protein epitopes are unstructured in water and promiscuously bind to proteins with low affinity and specificity. Here we combine structural stability and target specificity of proteins, with low cost and rapid synthesis of small molecules, towards meeting the significant challenge of binding coiled coil proteins in transcriptional regulation. By iteratively truncating a Jun-based peptide from 37 to 22 residues, strategically incorporating iâi+4 helix-inducing constraints, and positioning unnatural amino acids, we have produced short, water-stable, α-helical peptides that bind cFos. A three-dimensional NMR-derived structure for one peptide (24) confirmed a highly stable α-helix which was resistant to proteolytic degradation in serum. These short structured peptides are entropically pre-organized for binding with high affinity and specificity to cFos, a key component of the oncogenic transcriptional regulator Activator Protein-1 (AP-1). They competitively antagonized the cJun-cFos coiled-coil interaction. Truncating a Jun-based peptide from 37 to 22 residues decreased the binding enthalpy for cJun by â¼9 kcal/mol, but this was compensated by increased conformational entropy (TΔS ≤7.5 kcal/mol). This study demonstrates that rational design of short peptides constrained by α-helical cyclic pentapeptide modules is able to retain parental high helicity, as well as high affinity and specificity for cFos. These are important steps towards small antagonists of the cJun-cFos interaction that mediates gene transcription in cancer and inflammatory diseases.
Assuntos
Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fator de Transcrição AP-1/metabolismo , Sequência de Aminoácidos , Calorimetria , Dicroísmo Circular , Humanos , Zíper de Leucina , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Ligação Proteica , Desnaturação Proteica , Multimerização Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-fos/química , TemperaturaAssuntos
População Negra/psicologia , Emigrantes e Imigrantes , Infecções por HIV/prevenção & controle , Provedores de Redes de Segurança , Adulto , África/etnologia , Diagnóstico Tardio , Feminino , Infecções por HIV/etnologia , Conhecimentos, Atitudes e Prática em Saúde , Humanos , Pessoa de Meia-Idade , Avaliação de Programas e Projetos de Saúde , Fatores Socioeconômicos , Estados Unidos/epidemiologiaRESUMO
Mycobacterium smegmatis contains three chaperonin (cpn60) genes homologous to the Escherichia coli groEL gene. One of these (cpn60.1) is required for biofilm formation, but is nonessential, whereas a second (cpn60.2) is essential. Mycobacterium smegmatis is unique among Mycobacteria in having a third chaperonin gene, cpn60.3. The cpn60.1 gene has a gene upstream (cpn10) that is homologous to the gene for the E. coli co-chaperonin GroES. Phylogenetic analysis of the mycobacterial homologues suggests that early gene duplication and sequence divergence gave rise to the cpn60.1 and cpn60.2 genes found in all Mycobacteria species, while cpn60.3 appears to have been acquired by horizontal gene transfer. Here, we show that cpn60.2 and cpn10 are expressed more strongly than cpn60.1, while cpn60.3 shows very low levels of expression. The expression of all the genes, except cpn60.3, is significantly induced by heat shock, but much less so by other stresses. We mapped mRNA 5'-ends for the cpn10 and cpn60.1 genes, and measured the promoter activity of the upstream regions of both genes. The results show that the mRNA for this operon is cleaved between the cpn10 and cpn60.1 genes. These results are consistent with the evolution of a distinct function for the cpn60.1 gene.
Assuntos
Proteínas de Bactérias/biossíntese , Chaperoninas/biossíntese , Regulação da Expressão Gênica , Mycobacterium smegmatis/fisiologia , Proteínas de Bactérias/genética , Chaperoninas/genética , Análise por Conglomerados , Escherichia coli/genética , Evolução Molecular , Duplicação Gênica , Perfilação da Expressão Gênica , Transferência Genética Horizontal , Temperatura Alta , Filogenia , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos , Estresse FisiológicoRESUMO
Correct identification of translational start sites is important for understanding protein function and transcriptional regulation. The annotated translational start sites contained in genome databases are often predicted using bioinformatics and are rarely verified experimentally, and so are not all accurate. Therefore, we devised a simple approach for determining translational start sites using a combination of epitope tagging and frameshift mutagenesis. This assay was used to determine the start sites of three Mycobacterium tuberculosis proteins: LexA, SigC and Rv1955. We were able to show that proteins may begin before or after the predicted site. We also found that a small, non-annotated open reading frame upstream of Rv1955 was expressed as a protein, which we have designated Rv1954A. This approach is readily applicable to any bacterial species for which plasmid transformation can be achieved.