Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Am J Physiol Heart Circ Physiol ; 309(6): H1075-86, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26254334

RESUMO

Although degradation of extracellular matrix by matrix metalloproteinases (MMPs) is thought to be involved in symptomatic (S) carotid plaques in atherosclerosis, the mechanisms of MMP expression are poorly understood. Here, we demonstrate that collagen loss in vascular smooth vessel cells (VSMCs) isolated from S plaques was induced by epidermal growth factor (EGF) through the activation of p38-MAPK and JNK-MAPK pathways. Inhibitors of p38-MAPK and JNK-MAPK signaling pathways downregulated the expression of MMP-1 and MMP-9. In addition, we examined whether v-ets erythroblastosis virus E26 oncogene homologue 1 (Ets-1), an important regulator of different genes, is involved in destabilizing S plaques in patients with carotid stenosis. We demonstrate that EGF induces Ets-1 expression and decreases interstitial and basement membrane collagen in vascular smooth muscle cells (VSMCs) from patients with carotid stenosis. Increased expression of MMP-1 and -9 and decreased collagen mRNA transcripts were also found in Ets-1-overexpressed VSMCs. Transfection with both dominant-negative form of Ets-1 and small interfering RNA blocked EGF-induced MMP-1 and -9 expressions and increased the mRNA transcripts for collagen I (α1) and collagen III (α1) in S compared with asymptomatic (AS) carotid plaques. Inhibitors of p38-MAPK (SB202190) and JNK-MAPK (SP600125) signaling pathways decreased the expression of Ets-1, MMP-1, and MMP-9 and increased collagen type I and III expression in EGF-treated VSMCs. This study provides a mechanistic insight into the role of Ets-1 in the plaque destabilization in patients with carotid stenosis involving p38-MAPK and JNK signaling pathways.


Assuntos
Estenose das Carótidas/genética , Fator de Crescimento Epidérmico/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , RNA Mensageiro/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Idoso , Estenose das Carótidas/metabolismo , Técnicas de Cultura de Células , Colágeno/genética , Colágeno/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
3.
Mol Carcinog ; 54(10): 1026-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24798404

RESUMO

Solar ultraviolet (UV) radiation can cause severe damage to the skin and is the primary cause of most skin cancer. UV radiation causes DNA damage leading to mutations and also activates the Erbb2/HER2 receptor through indirect mechanisms involving reactive oxygen species. We hypothesized that Erbb2 activation accelerates the malignant progression of UV-induced skin cancer. Following the induction of benign squamous papillomas by UV exposure of v-ras(Ha) transgenic Tg.AC mice, mice were treated topically with the Erbb2 inhibitor AG825 and tumor progression monitored. AG825 treatment reduced tumor volume, increased tumor regression, and delayed the development of malignant squamous cell carcinoma (SCC). Progression to malignancy was associated with increased Erbb2 and ADAM12 (A Disintegin And Metalloproteinase 12) transcripts and protein, while inhibition of Erbb2 blocked the increase in ADAM12 message upon malignant progression. Similarly, human SCC and SCC cell lines had increased ADAM12 protein and transcripts when compared to normal controls. To determine whether Erbb2 up-regulation of ADAM12 contributed to malignant progression of skin cancer, Erbb2 expression was modulated in cultured SCC cells using forced over-expression or siRNA targeting, demonstrating up-regulation of ADAM12 by Erbb2. Furthermore, ADAM12 transfection or siRNA targeting revealed that ADAM12 increased both the migration and invasion of cutaneous SCC cells. Collectively, these results suggest Erbb2 up-regulation of ADAM12 as a novel mechanism contributing to the malignant progression of UV-induced skin cancer. Inhibition of Erbb2/HER2 reduced tumor burden, increased tumor regression, and delayed the progression of benign skin tumors to malignant SCC in UV-exposed mice. Inhibition of Erbb2 suppressed the increase in metalloproteinase ADAM12 expression in skin tumors, which in turn increased migration and tumor cell invasiveness.


Assuntos
Proteínas ADAM/genética , Expressão Gênica/genética , Receptor ErbB-2/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Regulação para Cima/genética , Proteína ADAM12 , Animais , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Dano ao DNA/genética , Progressão da Doença , Humanos , Camundongos , Camundongos Transgênicos , Pele/patologia , Raios Ultravioleta/efeitos adversos
4.
PLoS Med ; 3(4): e100, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16509766

RESUMO

BACKGROUND: Glomerular basement membrane (GBM), a key component of the blood-filtration apparatus in the in the kidney, is formed through assembly of type IV collagen with laminins, nidogen, and sulfated proteoglycans. Mutations or deletions involving alpha3(IV), alpha4(IV), or alpha5(IV) chains of type IV collagen in the GBM have been identified as the cause for Alport syndrome in humans, a progressive hereditary kidney disease associated with deafness. The pathological mechanisms by which such mutations lead to eventual kidney failure are not completely understood. METHODS AND FINDINGS: We showed that increased susceptibility of defective human Alport GBM to proteolytic degradation is mediated by three different matrix metalloproteinases (MMPs)--MMP-2, MMP-3, and MMP-9--which influence the progression of renal dysfunction in alpha3(IV)-/- mice, a model for human Alport syndrome. Genetic ablation of either MMP-2 or MMP-9, or both MMP-2 and MMP-9, led to compensatory up-regulation of other MMPs in the kidney glomerulus. Pharmacological ablation of enzymatic activity associated with multiple GBM-degrading MMPs, before the onset of proteinuria or GBM structural defects in the alpha3(IV)-/- mice, led to significant attenuation in disease progression associated with delayed proteinuria and marked extension in survival. In contrast, inhibition of MMPs after induction of proteinuria led to acceleration of disease associated with extensive interstitial fibrosis and early death of alpha3(IV)-/- mice. CONCLUSIONS: These results suggest that preserving GBM/extracellular matrix integrity before the onset of proteinuria leads to significant disease protection, but if this window of opportunity is lost, MMP-inhibition at the later stages of Alport disease leads to accelerated glomerular and interstitial fibrosis. Our findings identify a crucial dual role for MMPs in the progression of Alport disease in alpha3(IV)-/- mice, with an early pathogenic function and a later protective action. Hence, we propose possible use of MMP-inhibitors as disease-preventive drugs for patients with Alport syndrome with identified genetic defects, before the onset of proteinuria.


Assuntos
Predisposição Genética para Doença , Membrana Basal Glomerular/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Nefrite Hereditária/genética , Nefrite Hereditária/fisiopatologia , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Progressão da Doença , Matriz Extracelular/metabolismo , Membrana Basal Glomerular/fisiologia , Humanos , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteinúria/fisiopatologia , Especificidade por Substrato , Análise de Sobrevida , Regulação para Cima
5.
Atherosclerosis ; 248: 160-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27017522

RESUMO

OBJECTIVE: To determine the relationship between increased triggering receptor expressed on myeloid cells (TREM)-1 and plaque stability in atherosclerotic carotid stenosis. METHODS: The mRNA transcripts and protein for TREM-1, MMP-1, MMP-9, collagen type I (COL1A1) and collagen type III (COL3A1) were analyzed by qPCR and immunofluorescence in both tissues and VSMCs isolated from atherosclerotic carotid plaques of symptomatic and asymptomatic patients with carotid stenosis. RESULTS: The TREM-1, MMP-1 and MMP-9 mRNA transcripts were significantly increased (TREM-1, p < 0.01; MMP-1, p < 0.01 and MMP-9, p < 0.001) while COL1A1 and COL3A1 mRNA transcripts were decreased (p < 0.001) in VSMCs isolated from carotid plaques of symptomatic (S) than asymptomatic (AS) patients. Stimulation of cells with TNF-α further increased the mRNA transcripts of TREM-1, MMPs, COL1A1 and COL3A1. Modulation of TREM-1 by treatment with TREM-1 decoy receptor rTREM-1/Fc, and either TREM-1 antibodies or TREM-1 siRNA attenuated the TNF-α-induced expression of MMP-1 and MMP-9 (p < 0.01) and COL1A1 and COL3A1 (p < 0.01) in S compared to AS VSMCs isolated from carotid plaques. Inhibition of NF-kB (BAY 11-7085), JNK (SP600125) and PI3K (LY294002) signaling pathways decreased the expression of TREM-1 (p < 0.01), MMP-1 (p < 0.001) and MMP-9 (p < 0.01) in TNF-α-treated VSMCs isolated from S carotid plaques compared to AS patients. CONCLUSION: Increased expression of TREM-1 in S compared to AS patients involving MMP-1 and MMP-9 suggest a potential role of TREM-1 in plaque destabilization. Selective blockade of TREM-1 may contribute to the development of new therapies and promising targets for stabilizing vulnerable atherosclerotic plaques.


Assuntos
Estenose das Carótidas/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Glicoproteínas de Membrana/metabolismo , Placa Aterosclerótica/metabolismo , Receptores Imunológicos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Idoso , Colágeno Tipo I/metabolismo , Cadeia alfa 1 do Colágeno Tipo I , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Feminino , Humanos , Masculino , Microscopia de Fluorescência , Pessoa de Meia-Idade , Músculo Liso Vascular/citologia , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Receptor Gatilho 1 Expresso em Células Mieloides
6.
PLoS One ; 11(5): e0154802, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148736

RESUMO

Atherosclerosis is a chronic inflammatory disease with atherosclerotic plaques containing inflammatory cells, including T-lymphocytes, dendritic cells (DCs) and macrophages that are responsible for progression and destabilization of atherosclerotic plaques. Stressed cells undergoing necrosis release molecules that act as endogenous danger signals to alert and activate innate immune cells. In atherosclerotic tissue the number of DCs increases with the progression of the lesion and produce several inflammatory cytokines and growth factors. Triggering receptor expressed on myeloid cells (TREM)-1 plays a crucial role in inflammation. However, relationship of DCs and the role of TREM-1 with the stability of atherosclerotic plaques have not been examined. In this study, we investigated the heterogeneity of the plaque DCs, myeloid (mDC1 and mDC2) and plasmacytoid (pDCs), and examined the expression of TREM-1 and their co-localization with DCs in the plaques from symptomatic (S) and asymptomatic (AS) patients with carotid stenosis. We found increased expression of HLA-DR, fascin, and TREM-1 and decreased expression of TREM-2 and α-smooth muscle actin in S compared to AS atherosclerotic carotid plaques. Both TREM-1 and fascin were co-localized suggesting increased expression of TREM-1 in plaque DCs of S compared to AS patients. These data were supported by increased mRNA transcripts of TREM-1 and decreased mRNA transcripts of TREM-2 in carotid plaques of S compared to AS patients. There was higher density of both CD1c+ mDC1 and CD141+ mDC2 in the carotid plaques from AS compared to S patients, where as the density of CD303+ pDCs were higher in the carotid plaques of S compared to AS patients. These findings suggest a potential role of pDCs and TREM-1 in atherosclerotic plaque vulnerability. Thus, newer therapies could be developed to selectively block TREM-1 for stabilizing atherosclerotic plaques.


Assuntos
Estenose das Carótidas/imunologia , Células Dendríticas/imunologia , Actinas/metabolismo , Estenose das Carótidas/metabolismo , Estenose das Carótidas/cirurgia , Estudos de Casos e Controles , Endarterectomia das Carótidas , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Placa Aterosclerótica/patologia , RNA Mensageiro/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides
7.
Data Brief ; 8: 230-4, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27331093

RESUMO

The data described herein are related to the article entitled "Tumor necrosis factor-α regulates triggering receptor expressed on myeloid cells-1-dependent matrix metalloproteinases in the carotid plaques of symptomatic patients with carotid stenosis" (Rao et al., 2016) [1]. Additional data are provided on the dose-response effect of TNF-α, TREM-1 antibody and recombinant rTREM-1/Fc fusion chimera (TREM-1/FC) on the expression of MMP-1 and MMP-9 in vascular smooth muscle cells (VSMCs) isolated from human carotid endarterectomy tissues. Data are also presented on the distribution of CD86+ M1- and CD206+ M2-macrophages and their co-localization with TREM-1 in symptomatic carotid plaques as visualized by dual immunofluorescence. The interpretation of this data and further extensive insights can be found in Rao et al. (2016) [1].

8.
Physiol Rep ; 2(2): e00224, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24744893

RESUMO

Mechanisms underlying the rupture of atherosclerotic plaque, a crucial factor in the development of myocardial infarction and stroke, are not well defined. Here, we examined the role of epidermal growth factor (EGF)-mediated matrix metalloproteinases (MMP) on the stability of interstitial collagens in vascular smooth muscle cells (VSMCs) isolated from carotid endarterectomy tissues of symptomatic and asymptomatic patients with carotid stenosis. VSMCs isolated from the carotid plaques of both asymptomatic and symptomatic patients were treated with EGF. The MMP-9 activity was quantified by gelatin zymography and the analysis of mRNA transcripts and protein for MMP-9, MMP-1, EGFR and collagen types I, Col I(α1) and collagen type III, Col III(α1) were analyzed by qPCR and immunofluorescence, respectively. The effect of EGF treatment to increase MMP-9 activity and mRNA transcripts for MMP-9, MMP-1, and EGFR and to decrease mRNA transcripts for Col I(α1) and Col III(α1) was threefold to fourfold greater in VSMCs isolated from the carotid plaques of symptomatic than asymptomatic patients. Inhibitors of EGFR (AG1478) and a small molecule inhibitor of MMP-9 decreased the MMP9 expression and upregulated Col I(α1) and Col III(α1) in EGF-treated VSMCs of both groups. Additionally, the magnitude in decreased MMP-9 mRNA and increased Col I(α1) and Col III(α1) due to knockdown of MMP-9 gene with siRNA in EGF-treated VSMCs was significantly greater in the symptomatic group than the asymptomatic group. Thus, a selective blockade of both EGFR and MMP-9 may be a novel strategy and a promising target for stabilizing vulnerable plaques in patients with carotid stenosis.

9.
Am J Pathol ; 172(3): 761-73, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18258846

RESUMO

Previous work has shown that integrin alpha1-null Alport mice exhibit attenuated glomerular disease with decreased matrix accumulation and live much longer than strain-matched Alport mice. However, the mechanism underlying this observation is unknown. Here we show that glomerular gelatinase expression, specifically matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-14, was significantly elevated in both integrin alpha1-null mice and integrin alpha1-null Alport mice relative to wild-type mice; however, only MMP-9 was elevated in glomeruli of Alport mice that express integrin alpha1. Similarly, cultured mesangial cells from alpha1-null mice showed elevated expression levels of all three MMPs, whereas mesangial cells from Alport mice show elevated expression levels of only MMP-9. In both glomeruli and cultured mesangial cells isolated from integrin alpha1-null mice, activation of the p38 and ERK branches of the mitogen-activated protein kinase pathway was also observed. The use of small molecule inhibitors demonstrated that the activation of the p38, but not ERK, pathway was linked to elevated MMP-2, -9, and -14 expression levels in mesangial cells from integrin alpha1-null mice. In contrast, elevated MMP-9 levels in mesangial cells from Alport mice were linked to ERK pathway activation. Blockade of gelatinase activity using a small molecule inhibitor (BAY-12-9566) ameliorated progression of proteinuria and restored the architecture of the glomerular basement membrane in alpha1 integrin-null Alport mice, suggesting that elevated gelatinase activity exacerbates glomerular disease progression in these mice.


Assuntos
Regulação Enzimológica da Expressão Gênica , Integrina alfa1beta1/fisiologia , Metaloproteinases da Matriz/genética , Células Mesangiais/enzimologia , Nefrite Hereditária/genética , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Autoantígenos/genética , Compostos de Bifenilo , Células Cultivadas , Colágeno Tipo IV/genética , Modelos Animais de Doenças , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Integrina alfa1beta1/genética , Metaloproteinases da Matriz/metabolismo , Células Mesangiais/metabolismo , Camundongos , Camundongos Knockout , Nefrite Hereditária/enzimologia , Nefrite Hereditária/patologia , Compostos Orgânicos/farmacologia , Fenilbutiratos , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo
10.
Am J Pathol ; 169(1): 32-46, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16816359

RESUMO

Alport syndrome is a glomerular basement membrane (GBM) disease caused by mutations in type IV collagen genes. A unique irregular thickening and thinning of the GBM characterizes the progressive glomerular pathology. The metabolic imbalances responsible for these GBM irregularities are not known. Here we show that macrophage metalloelastase (MMP-12) expression is >40-fold induced in glomeruli from Alport mice and is markedly induced in glomeruli of both humans and dogs with Alport syndrome. Treatment of Alport mice with MMI270 (CGS27023A), a broad spectrum MMP inhibitor that blocks MMP-12 activity, results in largely restored GBM ultrastructure and function. Treatment with BAY-129566, a broad spectrum MMP inhibitor that does not inhibit MMP-12, had no effect. We show that inhibition of CC chemokine receptor 2 (CCR2) receptor signaling with propagermanium blocks induction of MMP-12 mRNA and prevents GBM damage. CCR2 receptor is expressed in glomerular podocytes of Alport mice, suggesting MCP-1 activation of CCR2 on podocytes may underlie induction of MMP-12. These data indicate that the irregular GBM that characterizes Alport syndrome may be mediated, in part, by focal degradation of the GBM due to MMP dysregulation, in particular, MMP-12. Thus, MMP-12/CCR2 inhibitors may provide a novel and effective therapeutic stra-tegy for Alport glomerular disease.


Assuntos
Membrana Basal Glomerular/patologia , Metaloendopeptidases/metabolismo , Nefrite Hereditária/enzimologia , Nefrite Hereditária/patologia , Animais , Northern Blotting , Western Blotting , Inibidores Enzimáticos/farmacologia , Membrana Basal Glomerular/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Hibridização In Situ , Metaloproteinase 12 da Matriz , Metaloendopeptidases/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Transmissão , Receptores CCR2 , Receptores de Quimiocinas/efeitos dos fármacos , Receptores de Quimiocinas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Am J Pathol ; 166(5): 1465-74, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15855646

RESUMO

Alport syndrome results from mutations in genes encoding collagen alpha3(IV), alpha4(IV), or alpha5(IV) and is characterized by progressive glomerular disease associated with a high-frequency sensorineural hearing loss. Earlier studies of a gene knockout mouse model for Alport syndrome noted thickening of strial capillary basement membranes in the cochlea, suggesting that the stria vascularis is the primary site of cochlear pathogenesis. Here we combine a novel cochlear microdissection technique with molecular analyses to illustrate significant quantitative alterations in strial expression of mRNAs encoding matrix metalloproteinases-2, -9, -12, and -14. Gelatin zymography of extracts from the stria vascularis confirmed these findings. Treatment of Alport mice with a small molecule inhibitor of these matrix metalloproteinases exacerbated strial capillary basement membrane thickening, demonstrating that alterations in basement membrane metabolism result in matrix accumulation in the strial capillary basement membranes. This is the first demonstration of true quantitative analysis of specific mRNAs for matrix metalloproteinases in a cochlear microcompartment. Further, these data suggest that the altered basement membrane composition in Alport stria influences the expression of genes involved in basement membrane metabolism.


Assuntos
Metaloproteinases da Matriz/metabolismo , Nefrite Hereditária/enzimologia , Estria Vascular/enzimologia , Animais , Membrana Basal/patologia , Capilares/efeitos dos fármacos , Capilares/patologia , Sistemas Computacionais , Ácidos Hidroxâmicos/farmacologia , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Knockout , Nefrite Hereditária/patologia , Inibidores de Proteases/farmacologia , Pirazinas/farmacologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estria Vascular/efeitos dos fármacos , Sulfonamidas/farmacologia
12.
Pediatr Nephrol ; 20(6): 732-9, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15782307

RESUMO

Matrix metalloproteinases (MMPs) play an important regulatory role in many biological and pathological processes and their specific role in Alport syndrome (AS) is not yet clearly defined. In this study, the naturally occurring canine X-linked AS was used to demonstrate a potential role for MMP-3 and MMP-7 in Alport renal pathogenesis. Recently, we demonstrated that the expression of MMP-2, MMP-9 and MMP-14 was upregulated in the renal cortex of dogs with a spontaneous form of XLAS. In the present study, we examined necropsy samples of renal cortex from normal and XLAS dogs for MMP-3 and MMP-7 as they have the potential to activate MMP-2 and MMP-9. Immunohistochemical analysis showed strong immunostaining for both MMP-3 and MMP-7 in the interstitial space of XLAS kidneys, while virtually no immunostaining was observed in similar fields from normal dogs. RT-PCR and casein zymography confirmed that both mRNA transcripts and activities of MMP-3 and MMP-7 are elevated in XLAS kidneys. The induction of these MMPs likely contributes to tissue destruction associated with the fibrogenic process, while augmenting the activation of MMP-2 and MMP-9 by MMP-3 and MMP-7 in XLAS. Thus, these data further implicate a role for the MMPs in progressive renal pathogenesis associated with AS.


Assuntos
Doenças do Cão/enzimologia , Doenças do Cão/genética , Ligação Genética , Rim/enzimologia , Metaloproteinases da Matriz/metabolismo , Nefrite Hereditária/veterinária , Cromossomo X , Animais , Cães , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/metabolismo , Nefrite Hereditária/genética
13.
J Biol Chem ; 280(23): 21882-92, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15824107

RESUMO

We have previously demonstrated the effectiveness of adenovirus-mediated expression of antisense urokinase-type plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9) in inhibiting tumor invasion in vitro and ex vivo. However, the therapeutic effect of the adenovirus-mediated antisense approach was shown to be transient and required potentially toxic, high viral doses. In contrast, RNA interference (RNAi)-mediated gene targeting may be superior to the traditional antisense approach, because the target mRNA is completely degraded and the molar ratio of siRNA required to degrade the target mRNA is very low. Here, we have examined the siRNA-mediated target RNA degradation of uPAR and MMP-9 in human glioma cell lines. Using RNAi directed toward uPAR and MMP-9, we achieved specific inhibition of uPAR and MMP-9. This bicistronic construct (pUM) inhibited the formation of capillary-like structures in both in vitro and in vivo models of angiogenesis. We demonstrated that blocking the expression of these genes results in significant inhibition of glioma tumor invasion in Matrigel and spheroid invasion assay models. RNAi for uPAR and MMP-9 inhibited cell proliferation, and significantly reduced the levels of phosphorylated forms of MAPK, ERK, and AKT signaling pathway molecules when compared with parental and empty vector/scrambled vector-transfected SNB19 cells. Furthermore, using RNAi to simultaneously target two proteases resulted in total regression of pre-established intracerebral tumor growth. Our results provide evidence that the use of hairpin siRNA expression vectors for uPAR and MMP-9 may provide an effective tool for cancer therapy.


Assuntos
Neoplasias Encefálicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Glioma/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neovascularização Patológica , Interferência de RNA , RNA de Cadeia Dupla/genética , Receptores de Superfície Celular/metabolismo , Animais , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/patologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células , Colágeno/farmacologia , Regulação para Baixo , Combinação de Medicamentos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Inativação Gênica , Vetores Genéticos , Glioblastoma/metabolismo , Glioma/irrigação sanguínea , Glioma/terapia , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imuno-Histoquímica , Laminina/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Nus , Modelos Biológicos , Modelos Genéticos , Invasividade Neoplásica , Conformação de Ácido Nucleico , Fosforilação , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Proteoglicanas/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Fatores de Tempo , Transfecção
14.
Kidney Int ; 63(5): 1736-48, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12675849

RESUMO

BACKGROUND: Alport syndrome is a group of genetic disorders resulting from mutations in either the alpha3(IV), alpha4(IV) or alpha5(IV) collagen chains. The disease is characterized by a progressive glomerulonephritis, usually associated with a high-frequency specific sensorineural hearing loss, dot and fleck retinopathy, and lens abnormalities. Dogs with naturally occurring genetic disorders of basement membrane collagen (type IV) may serve as animal models of Alport syndrome. In this study, a well-characterized naturally occurring canine model was employed to demonstrate a potential role for matrix metalloproteinases (MMPs) in Alport renal disease pathogenesis. METHODS: Adolescent male dogs that developed renal failure were euthanized and necropsied. Clinicopathologic features of the disease were characterized, and kidneys from normal and Alport dogs were analyzed by gelatin zymography, Western blotting, in situ zymography, immunohistology, and by reverse transcription polymerase chain reaction (RT-PCR) for expression of MMP-2, MMP-9, and membrane type 1-MMP (MT1-MMP). RESULTS: Affected dogs developed proteinuria and rapidly progressive juvenile-onset chronic renal failure. The activities of MMP-2 and MMP-9 were significantly induced in Alport kidney. In situ zymography confirmed elevated active metalloproteinases in kidney cryosections of affected dogs. The mRNAs encoding MMP-2, MMP-9 and MT1-MMP were also increased in Alport dogs suggesting that elevated expression of MMPs reflects events in the progression of Alport syndrome in dogs. CONCLUSION: Elevated expression of MMP-2, MMP-9, and MT1-MMP is observed in fibrotic renal cortex from X-linked Alport syndrome dogs. These findings suggest that MMPs may play an important role in matrix accumulation associated with progressive renal scarring in this model.


Assuntos
Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Nefrite Hereditária/patologia , Nefrite Hereditária/fisiopatologia , Animais , Cães , Fibrose , Gelatina , Regulação Enzimológica da Expressão Gênica , Córtex Renal/enzimologia , Córtex Renal/patologia , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinases da Matriz Associadas à Membrana , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Nefrite Hereditária/genética , RNA Mensageiro/análise , Cromossomo X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA