Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Phys Chem A ; 127(18): 4137-4151, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37103984

RESUMO

A variety of organic surfactants are found at air-water interfaces in natural environments, including on the surfaces of aqueous aerosols. The structure and morphology of these organic films can have profound impacts on material transfer between the gas and condensed phases, the optical properties of atmospheric aerosol, and chemical processing at air-water interfaces. Combined, these effects can have significant impacts on climate via radiative forcing, but our understanding of organic films at air-water interfaces is incomplete. Here, we examine the impact of the polar headgroup and alkyl tail length on the structure and morphology of organic monolayers at the air-water interfaces. First, we focus on the substituted carboxylic acids, α-keto acids, using Langmuir isotherms and infrared reflection absorption spectroscopy (IR-RAS) to elucidate key structures and phase behaviors of α-keto acids with a range of surface activities. We show that the structure of α-keto acids, both soluble and insoluble, at water surfaces is a compromise between van der Waals interactions of the hydrocarbon tail and hydrogen bonding interactions involving the polar headgroup. Then, we use this new data set regarding α-keto acid films at water surfaces to examine the role of the polar headgroup on organic films using a similar substituted carboxylic acid (α-hydroxystearic acid), an unsubstituted carboxylic acid (stearic acid), and an alcohol (stearyl alcohol). We show that the polar headgroup and its hydrogen bonding interactions can significantly affect the orientation of amphiphiles at air-water interfaces. Here, we provide side-by-side comparisons of Langmuir isotherms and IR-RA spectra for a set of environmentally relevant organic amphiphiles with a range of alkyl tail lengths and polar headgroup structures.

2.
J Phys Chem A ; 125(23): 4929-4942, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-33979519

RESUMO

The asymmetric water-air interface provides a dynamic aqueous environment with properties that are often very different than bulk aqueous or gaseous phases and promotes reactions that are thermodynamically, kinetically, or otherwise unfavorable in bulk water. Prebiotic chemistry faces a key challenge: water is necessary for life yet reduces the efficiency of many biomolecular synthesis reactions. This perspective considers water-air interfaces as auspicious reaction environments for abiotic synthesis. We discuss recent evidence that (1) water-air interfaces promote condensation reactions including peptide synthesis, phosphorylation, and oligomerization; (2) photochemistry at water-air interfaces may have been a significant source of prebiotic molecular complexity, given the lack of oxygen and increased availability of near-ultraviolet radiation on early Earth; and (3) water-air interfaces can promote spontaneous reduction and oxidation reactions, potentially providing protometabolic pathways. Life likely began within a relatively short time frame, and water-air interfaces offer promising environments for simultaneous and efficient biomolecule production.

3.
J Phys Chem A ; 122(39): 7782-7789, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-30189135

RESUMO

We studied the reaction of electronically excited sulfur dioxide in the triplet state (3SO2) with a variety of alkane species, including propane, n-butane, isobutane, n-pentane, n-hexane, cyclohexane, n-octane, and n-nonane. Reaction rate constants for the photoinitiated reaction of SO2 with all of these species were determined and found to be in the range from 3.7 × 10-13 to 5.1 × 10-12 cm3molecule-1s-1. We found that reaction proceeds via a hydrogen abstraction to form HOSO• and organic radical (R•) species and that reactivity is correlated with the energy required to break a C-H bond and the length of the alkane chain. Abstraction rates were found to be fastest for reaction with hydrogen on a tertiary carbon. Similarly, abstraction from secondary carbons is found to be faster than from primary carbons. The reactivity of 3SO2 with alkanes increases with chain length as additional secondary carbons are added.

4.
J Am Chem Soc ; 139(20): 6946-6959, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28481114

RESUMO

The aqueous phase photochemistry of a series of amphiphilic α-keto acids with differing linear alkyl chain lengths was investigated, demonstrating the ability of sunlight-initiated reactions to build molecular complexity under environmentally relevant conditions. We show that the photochemical reaction mechanisms for α-keto acids in aqueous solution are robust and generalizable across alkyl chain lengths. The organic radicals generated during photolysis are indiscriminate, leading to a large mixture of photoproducts that are observed using high-resolution electrospray ionization mass spectrometry, but these products are identifiable following literature photochemical mechanisms. The alkyl oxoacids under study here can undergo a Norrish Type II reaction to generate pyruvic acid, increasing the diversity of observed photoproducts. The major products of this photochemistry are covalently bonded dimers and trimers of the starting oxoacids, many of which are multi-tailed lipids. The properties of these oligomers are discussed, including their spontaneous self-assembly into aggregates.


Assuntos
Cetoácidos/química , Tensoativos/síntese química , Estrutura Molecular , Processos Fotoquímicos , Tensoativos/química , Água/química
5.
J Phys Chem A ; 121(22): 4272-4282, 2017 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-28510434

RESUMO

The aqueous phase photochemistry of pyruvic acid, an important oxidation product of isoprene, is known to generate larger oligomeric species that may contribute to the formation of secondary organic aerosol in the atmosphere. Using high resolution negative mode electrospray ionization mass spectrometry, the aqueous photochemistry of dilute solutions of pyruvic acid (10, 1, and 0.5 mM) under anaerobic conditions was investigated. Even at the lowest concentration, covalently bonded dimers and trimers of pyruvic acid were observed as photochemical products. We calculate that it is energetically possible to photochemically generate parapyruvic acid, a dimer of pyruvic acid that is known to form via dark oligomerization processes. Subsequent photochemical reactions of parapyruvic acid with pyruvic acid form larger oligomeric products, such as 2,4-dihydroxy-2-methyl-5-oxohexanoic acid. A robust and relatively simple photochemical mechanism is discussed that explains both the conditional dependence and wide array of products that are observed.

6.
J Phys Chem A ; 121(44): 8368-8379, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29032688

RESUMO

α-Keto acids are important, atmospherically relevant species, and their photochemistry has been considered in the formation and processing of aerosols. Despite their atmospheric relevance, the photochemistry of these species has primarily been studied under extremely low pH conditions. Using a variety of analytical techniques, we characterize the extent of hydration and deprotonation for solutions of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, as a function of pH. We find that changes in the initial solution composition govern the accessibility of different photochemical pathways, resulting in slowed photolysis under high pH conditions and a shift in photoproducts that can be predicted mechanistically.

7.
Phys Chem Chem Phys ; 18(30): 20067-84, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27193698

RESUMO

Solar radiation was overwhelmingly the largest source of energy on the early Earth. Energy provided by the Sun has the potential to access different chemistries than energy provided by other sources, such as hydrothermal vents, because of the unique characteristics of photochemistry that differentiate it from conventional thermal chemistry. This review considers how sunlight-driven reactions can abiotically generate prebiotic molecules necessary for the evolution of life. We discuss briefly the characteristics of the early Sun and the likely environmental conditions on the early Earth because photochemistry is both environment- and molecule-specific. An overview of the fundamental principles of photophysics and photochemistry is followed by discussion of a selection of prebiotically-relevant examples of photochemical reactions, focusing on syntheses that lead to the production of cellular components (e.g. sugars, lipids, and biopolymer precursors). The role of photostability as an evolutionary driving force is also considered. These examples highlight the ability of simple organic molecules to harness solar energy and convert it into high-energy chemical bonds, generating molecular complexity.


Assuntos
Origem da Vida , Fotoquímica , Luz Solar , Energia Solar
8.
J Am Chem Soc ; 136(10): 3784-7, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24559493

RESUMO

The aqueous photochemistry of 2-oxooctanoic acid (a single-tailed surfactant) results in the synthesis of a double-tailed surfactant product followed by spontaneous self-assembly into vesicles. The photochemical mechanism is detailed here, and the reaction products are identified using mass spectrometry. Then, the self-assembled vesicles are characterized using dynamic light scattering, fluorescence microscopy, and NMR. Further, their stability over time and in the presence of MgCl2 salt is demonstrated. This work contributes to membrane evolution through the provision of a prebiotic route for the synthesis of plausible membrane components and subsequent self-assembly of a primitive enclosure.

9.
J Phys Chem A ; 118(37): 8505-16, 2014 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-24725260

RESUMO

Pyruvic acid in the atmosphere is found in both the gas and aqueous phases, and its behavior gives insight into that of other α-keto acids. Photolysis is a significant degradation pathway for this molecule in the environment, and in aqueous solution the major photoproducts are higher-molecular-weight compounds that may contribute to secondary organic aerosol mass. The kinetics of the aqueous-phase photolysis of pyruvic acid under aerobic and anaerobic conditions was investigated in order to calculate the first-order rate constant, Jaq, in solution. Analysis of the exponential decay of pyruvic acid was performed by monitoring both pyruvic acid and its photolytic products over the course of the reaction by (1)H NMR spectroscopy. Detection of major and minor products in the 0.1, 0.05, and 0.02 M pyruvic acid photolyses clearly demonstrates that the primary reaction pathways are highly dependent on the initial pyruvic acid concentration and the presence of dissolved oxygen. The Jaq values were calculated with approximations based on the dominant pathways for limiting cases of the mechanism. Finally, a model study using the calculated rate constants demonstrates the importance of aqueous-phase photolysis as a sink for pyruvic acid in the atmosphere, compared with gas-phase photolysis and OH oxidation.

10.
J Phys Chem B ; 128(15): 3755-3763, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38578662

RESUMO

We present a combined Langmuir-Pockels trough and ambient pressure X-ray photoelectron spectroscopy (APXPS) study of the compression of stearic acid surfactant layers on neat water. Changes in the packing density of the molecules are directly determined from C 1s and O 1s APXPS data. The experimental data are fit with a 2D model for the stearic acid coverage. Based on the results of these proof-of-principle experiments, we discuss the remaining challenges that need to be overcome for future investigations of the role of surfactants in heterogeneous chemical reactions at liquid-vapor interfaces in combined Langmuir-Pockels trough and APXPS measurements.

12.
Chem Sci ; 11(48): 13026-13043, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34094487

RESUMO

Electrospray and Electrosonic Spray Ionization Mass Spectrometry (ESI-MS and ESSI-MS) have been widely used to report evidence that many chemical reactions in micro- and nano-droplets are dramatically accelerated by factors of ∼102 to 106 relative to macroscale bulk solutions. Despite electrospray's relative simplicity to both generate and detect reaction products in charged droplets using mass spectrometry, substantial complexity exists in how the electrospray process itself impacts the interpretation of the mechanism of these observed accelerated rates. ESI and ESSI are both coupled multi-phase processes, in which analytes in small charged droplets are transferred and detected as gas-phase ions with a mass spectrometer. As such, quantitative examination is needed to evaluate the impact of multiple experimental factors on the magnitude and mechanisms of reaction acceleration. These include: (1) evaporative concentration of reactants as a function of droplet size and initial concentration, (2) competition from gas-phase chemistry and reactions on experimental surfaces, (3) differences in ionization efficiency and ion transmission and (4) droplet charge. We examine (1-4) using numerical models, new ESI/ESSI-MS experimental data, and prior literature to assess the limitations of these approaches and the experimental best practices required to robustly interpret acceleration factors in micro- and nano-droplets produced by ESI and ESSI.

13.
Chem Sci ; 11(32): 8533-8545, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34123113

RESUMO

A kinetic expression is derived to explain how interfaces alter bulk chemical equilibria and accelerate reactions in micro-compartments. This description, aided by the development of a stochastic model, quantitatively predicts previous experimental observations of accelerated imine synthesis in micron-sized emulsions. The expression accounts for how reactant concentration and compartment size together lead to accelerated reaction rates under micro-confinement. These rates do not depend solely on concentration, but rather the fraction of total molecules in the compartment that are at the interface. Although there are ∼107 to 1013 solute molecules in a typical micro-compartment, a kind of "stochasticity" appears when compartment size and reagent concentration yield nearly equal numbers of bulk and interfacial molecules. Although this is distinct from the stochasticity produced by nano-confinement, these results show how interfaces can govern chemical transformations in larger atmospheric, geologic and biological compartments.

14.
J Am Soc Mass Spectrom ; 30(2): 339-343, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30374662

RESUMO

Recent studies show that reactions inside micron-sized compartments (e.g., droplets, emulsions) can proceed at significantly accelerated rates and with different mechanisms compared to the same reactions in a macroscopic container. Many of these studies use electrospray ionization (ESI) to both generate droplets and to quantify, via mass spectrometry (MS), droplet reaction kinetics. The highly charged and rapidly evaporating droplets produced in ESI make it difficult to examine precisely the underlying cause for droplet-induced rate enhancements. Additionally, interpretation of the spectra from ESI-MS can be complicated by gas-phase ion-molecule and clustering reactions. Here, we use an approach where droplet generation is separated from ionization, in order to decouple the multiple possible sources of acceleration and to examine more closely the potential role of gas-phase chemistry. The production of sugar phosphates from the reaction of phosphoric acid with simple sugars (a reaction that does not occur in bulk solution but has recently been reported to occur in droplets) is measured using this approach to compare reactivity in droplets (i.e., with compartments) with that in the gas phase (i.e., without compartments). The same product ions that have been previously assigned to in droplet reactions are observed with and without compartmentalization. These results suggest that in some cases, gas-phase processes in the ionization region can potentially complicate the quantification and interpretation of accelerated reactions in droplets using ESI-MS (or one of its variants). In such cases, contributions from in-droplet chemistry cannot be ruled out, but we demonstrate that gas-phase processes can be a significant (and possibly dominant) reaction pathway. We suggest that future studies of rate acceleration in droplets be modified to better assess the potential for non-droplet-related processes. Graphical Abstract ᅟ.

15.
ACS Cent Sci ; 4(5): 624-630, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29806009

RESUMO

Sunlight can initiate photochemical reactions of organic molecules though direct photolysis, photosensitization, and indirect processes, often leading to complex radical chemistry that can increase molecular complexity in the environment. α-Keto acids act as photoinitiators for organic species that are not themselves photoactive. Here, we demonstrate this capability through the reaction of two α-keto acids, pyruvic acid and 2-oxooctanoic acid, with a series of fatty acids and fatty alcohols. We show for five different cases that a cross-product between the photoinitiated α-keto acid and non-photoactive species is formed during photolysis in aqueous solution. Fatty acids and alcohols are relatively unreactive species, which suggests that α-keto acids are able to act as radical initiators for many atmospherically relevant molecules found in the sea surface microlayer and on atmospheric aerosol particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA