Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 35(47): 15568-81, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26609153

RESUMO

Learning of novel information, including novel taste, requires activation of neuromodulatory transmission mediated, for example, by the muscarinic acetylcholine receptors (mAChRs) in relevant brain structures. In addition, drugs enhancing the function of mAChRs are used to treat memory impairment and decline. However, the mechanisms underlying these effects are poorly understood. Here, using quantitative RT-PCR in Wistar Hola rats, we found quinone reductase 2 (QR2) to be expressed in the cortex in an mAChR-dependent manner. QR2 mRNA expression in the insular cortex is inversely correlated with mAChR activation both endogenously, after novel taste learning, and exogenously, after pharmacological manipulation of the muscarinic transmission. Moreover, reducing QR2 expression levels through lentiviral shRNA vectors or activity via inhibitors is sufficient to enhance long-term memories. We also show here that, in patients with Alzheimer's disease, QR2 is overexpressed in the cortex. It is suggested that QR2 expression in the cortex is a removable limiting factor of memory formation and thus serves as a new target to enhance cognitive function and delay the onset of neurodegenerative diseases. SIGNIFICANCE STATEMENT: We found that: (1) quinone reductase 2 (QR2) expression is a muscarinic-receptor-dependent removable constraint on memory formation in the cortex, (2) reducing QR2 expression or activity in the cortex enhances memory formation, and (3) Alzheimer's disease patients overexpressed QR2. We believe that these results propose a new mechanism by which muscarinic acetylcholine receptors affect cognition and suggest that inhibition of QR2 is a way to enhance cognition in normal and pathological conditions.


Assuntos
Córtex Cerebral/enzimologia , Regulação Enzimológica da Expressão Gênica , Memória de Longo Prazo/fisiologia , Quinona Redutases/biossíntese , Receptores Muscarínicos/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Animais , Córtex Cerebral/patologia , Humanos , Masculino , Quinona Redutases/genética , Ratos , Ratos Wistar
2.
Nat Commun ; 7: 12740, 2016 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-27615520

RESUMO

Thalamic inputs of cells in sensory cortices are outnumbered by local connections. Thus, it was suggested that robust sensory response in layer 4 emerges due to synchronized thalamic activity. To investigate the role of both inputs in the generation of correlated cortical activities, we isolated the thalamic excitatory inputs of cortical cells by optogenetically silencing cortical firing. In anaesthetized mice, we measured the correlation between isolated thalamic synaptic inputs of simultaneously patched nearby layer 4 cells of the barrel cortex. Here we report that in contrast to correlated activity of excitatory synaptic inputs in the intact cortex, isolated thalamic inputs exhibit lower variability and asynchronous spontaneous and sensory-evoked inputs. These results are further supported in awake mice when we recorded the excitatory inputs of individual cortical cells simultaneously with the local field potential in a nearby site. Our results therefore indicate that cortical synchronization emerges by intracortical coupling.


Assuntos
Fenômenos Eletrofisiológicos , Córtex Somatossensorial/fisiologia , Tálamo/fisiologia , Vibrissas/fisiologia , Animais , Interpretação Estatística de Dados , Feminino , Masculino , Camundongos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Tálamo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA