Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 185: 109706, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31561073

RESUMO

Chromium (Cr) is becoming a potential pollutant with the passage of time. Higher intake of Cr does not only affect the productivity of crops, but also the quality of food produced in Cr polluted soils. In the past, foliar application of Fe is widely studied regarding their potential to alleviate Cr toxicity. However, limited information is documented regarding the combined use of PGPR and foliar Fe. Therefore, the current study was conducted to screen Cr tolerant PGPR and examine effect of foliar Fe with and without Cr tolerant PGPR under Cr toxicity (50 and 100 mg kg-1) in maize (Zea mays) production. Out of 15, two Cr tolerant PGPR were screened, identified (Agrobacterium fabrum and Leclercia adecarboxylata) and inoculated with 500 µM Fe. Results confirmed that Agrobacterium fabrum + 500 µM Fe performed significantly best in improving dry weight of roots and shoot, plant height, roots and shoot length and plant leaves in maize under Cr toxicity. A significant increase in chlorophyll a (51.5%), b (55.1%) and total (32.5%) validated the effectiveness of A. fabrum + 500 µM Fe to alleviate Cr toxicity. Improvement in intake of N (64.7%), P (70.0 and 183.3%), K (53.8% and 3.40-fold) in leaves and N (25.6 and 122.2%), P (25.6 and 122.2%), K (33.3% and 97.3%) in roots of maize at Cr50 and Cr100 confirmed that combined application of A. fabrum with 500 µM Fe is a more efficacious approach for alleviation of Cr toxicity and fortification of Fe comparative to sole foliar application of 500 µM Fe.


Assuntos
Agrobacterium/enzimologia , Carbono-Carbono Liases/metabolismo , Cromo/toxicidade , Enterobacteriaceae/enzimologia , Ferro/farmacologia , Poluentes do Solo/toxicidade , Zea mays/efeitos dos fármacos , Agrobacterium/efeitos dos fármacos , Clorofila A/metabolismo , Enterobacteriaceae/efeitos dos fármacos , Ferro/metabolismo , Paquistão , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Rizosfera , Zea mays/crescimento & desenvolvimento , Zea mays/microbiologia
2.
Environ Sci Pollut Res Int ; 27(2): 1752-1761, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31758478

RESUMO

Among various heavy metals, nickel (Ni) is a potential pollutant that accumulates in broad-leaf vegetables and is reported to be carcinogenic. Biochar (BC) is a nutrient-rich and effective organic amendment for immobilization of Ni in soil. Fenugreek (Trigonella corniculata L.), a broad-leaf vegetable, is commonly cultivated due to its all-inclusive composition of nutrients such as calcium and iron and ß-carotene and vitamins. Therefore, a field-pot study was conducted to examine the effectiveness of cotton-sticks-waste biochar (BC) for soil immobilization of Ni in fenugreek crop cultivated between early-October to end-November 2015. Fenugreek was grown in a sandy-loam soil experimentally contaminated with various Ni levels (0, 25, 50, and 100 mg Ni kg-1 soil) under three BC levels (0, 3, and 5%; w/w). Overall, results showed increasing plant lipid peroxidation (assessed via malondialdehyde) and ascorbic-acid concentration with increasing Ni toxicity level without BC application (p ≤ 0.05). Application of 3% BC increased the chlorophyll a (20.0%), chlorophyll b (49.1%), total chlorophyll (27.6%), carotenoids (21.6%), anthocyanin (27.2%), photosynthetic rate (112%), transpiration rate (45.0%), and sub-stomatal CO2 concentration (19.9%) in fenugreek as compared to control (0% BC) under 50 mg Ni kg-1 soil. Higher BC application rate (5%) was more effective in increasing the chlorophyll a (33.6%), chlorophyll b (81.1%), total chlorophyll (43.9%), carotenoids (71.7%), anthocyanin (77.8%), photosynthetic rate (127%), transpiration rate (42.2%), and sub-stomatal CO2 concentration (23.5) over control under 100 mg Ni kg-1 soil. We suggest that the consistent increases in dry mass, carbon flux rate and, protein, amino acids, and sugar contents of fenugreek (cultivated in a soil toxified with Ni and amended with 5% BC) seems to be caused by the reduction in the mobility of Ni in the presence of BC in a sandy-loam soil.


Assuntos
Disponibilidade Biológica , Carvão Vegetal , Níquel/toxicidade , Poluentes do Solo/toxicidade , Trigonella/efeitos dos fármacos , Clorofila/análise , Peroxidação de Lipídeos , Níquel/análise , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA