Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Appl Clin Med Phys ; 25(2): e14173, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858985

RESUMO

The purpose is to reduce normal tissue radiation toxicity for electron therapy through the creation of a surface-conforming electron multileaf collimator (SCEM). The SCEM combines the benefits of skin collimation, electron conformal radiotherapy, and modulated electron radiotherapy. An early concept for the SCEM was constructed. It consists of leaves that protrude towards the patient, allowing the leaves to conform closely to irregular patient surfaces. The leaves are made of acrylic to decrease bremsstrahlung, thereby decreasing the out-of-field dose. Water tank scans were performed with the SCEM in place for various field sizes for all available electron energies (6, 9, 12, and 15 MeV) with a 0.5 cm air gap to the water surface at 100 cm source-to-surface distance (SSD). These measurements were compared with Cerrobend cutouts with the field size-matched at 100 and 110 cm SSD. Output factor measurements were taken in solid water for each energy at dmax for both the cerrobend cutouts and SCEM at 100 cm SSD. Percent depth dose (PDD) curves for the SCEM shifted shallower for all energies and field sizes. The SCEM also produced a higher surface dose relative to Cerrobend cutouts, with the maximum being a 9.8% increase for the 3 cm × 9 cm field at 9 MeV. When compared to the Cerrobend cutouts at 110 cm SSD, the SCEM showed a significant decrease in the penumbra, particularly for lower energies (i.e., 6 and 9 MeV). The SCEM also showed reduced out-of-field dose and lower bremsstrahlung production than the Cerrobend cutouts. The SCEM provides significant improvement in the penumbra and out-of-field dose by allowing collimation close to the skin surface compared to Cerrobend cutouts. However, the added scatter from the SCEM increases shallow PDD values. Future work will focus on reducing this scatter while maintaining the penumbra and out-of-field benefits the SCEM has over conventional collimation.


Assuntos
Elétrons , Aceleradores de Partículas , Humanos , Dosagem Radioterapêutica , Radiometria , Planejamento da Radioterapia Assistida por Computador , Água
2.
Scand J Clin Lab Invest ; 82(3): 238-245, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35404718

RESUMO

This study aims to compare skin perfusion pressure measurements (SPP) at midfoot and below knee level performed with a novel laser Doppler flowmetry (LD) probe with a reference method based on photo plethysmography (PP). It includes 40 patients referred with known or suspected peripheral arterial disease. The SPP was performed with both devices. Blinded re-interpretation of the SPP measurements was carried out by three observers and a consensus quality score was provided for each measurement. SPP >40 mmHg was considered a clinically relevant cut-off. This study evaluates a total of 48 paired measurements of the midfoot and 54 below knee. The two methods agreed in overall diagnostic classification in 80 of 102 measurements (78%) with both methods showing SPP ≥40 mmHg in 21 cases, and both methods showing SPP <40 mmHg in 59 cases. Of the 22 participants with disagreement (22%) in overall classification, 15 had measurements within the range of 30-50 mmHg, and 7 with a clinically relevant disagreement with one device showing SPP <30 mmHg and the other ≥40 mmHg. Analysis of inter observer variation for the LD readings showed an intraclass correlation coefficient of 0.880 (95% CI: 0.807 to 0.929, p- value <0.05) at midfoot, and 0.933 (95% CI: 0.894 to 0.959, p-value <0.05) at below knee level. The novel probe based on LD showed good correlation with PP in absolute pressures, sufficient agreement in overall disease classification as well as good to excellent reliability in terms of inter observer variation.


Assuntos
Doença Arterial Periférica , Humanos , Fluxometria por Laser-Doppler/métodos , Perfusão , Doença Arterial Periférica/diagnóstico , Pletismografia , Reprodutibilidade dos Testes
3.
J Appl Clin Med Phys ; 23(5): e13576, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35322526

RESUMO

INTRODUCTION: Two end-to-end tests evaluate the accuracy of a surface-guided radiation therapy (SGRT) system (CRAD Catalyst HD) for position verification in comparison to a stereoscopic x-ray imaging system (Brainlab Exactrac ) for single-isocenter, multiple metastases stereotactic radiosurgery (SRS) using 3D polymer gel inserts. MATERIALS AND METHODS: A 3D-printed phantom (Prime phantom, RTsafe PC, Athens, Greece) with two separate cylindrical polymer gel inserts were immobilized in open-face masks and treated with a single isocentric, multitarget SRS plan. Planning was done in Brainlab (Elements) to treat five metastatic lesions in one fraction, and initial setup was done using cone beam computed tomography. Positional verification was done using orthogonal X-ray imaging (Brainlab Exactrac) and/or a surface imaging system (CRAD Catalyst HD, Uppsala, Sweden), and shift discrepancies were recorded for each couch angle. Forty-two hours after irradiation, the gel phantom was scanned in a 1.5 Tesla MRI, and images were fused with the patient computed tomography data/structure set for further analysis of spatial dose distribution. RESULTS: Discrepancies between the CRAD Catalyst HD system and Brainlab Exactrac were <1 mm in the translational direction and <0.5° in the angular direction at noncoplanar couch angles. Dose parameters (DMean% , D95% ) and 3D gamma index passing rates were evaluated for both setup modalities for each planned target volume (PTV) at a variety of thresholds: 3%/2 mm (Exactrac≥93.1% and CRAD ≥87.2%), 5%/2 mm (Exactrac≥95.6% and CRAD ≥94.6%), and 5%/1 mm (Exactrac≥81.8% and CRAD ≥83.7%). CONCLUSION: Dose metrics for a setup with surface imaging was found to be consistent with setup using x-ray imaging, demonstrating high accuracy and reproducibility for treatment delivery. Results indicate the feasibility of using surface imaging for position verification at noncoplanar couch angles for single-isocenter, multiple-target SRS using end-to-end quality assurance (QA) testing with 3D polymer gel dosimetry.


Assuntos
Radiocirurgia , Humanos , Imagens de Fantasmas , Polímeros , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Reprodutibilidade dos Testes , Raios X
4.
J Appl Clin Med Phys ; 22(7): 198-207, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085384

RESUMO

PURPOSE: For mobile lung tumors, four-dimensional computer tomography (4D CT) is often used for simulation and treatment planning. Localization accuracy remains a challenge in lung stereotactic body radiation therapy (SBRT) treatments. An attractive image guidance method to increase localization accuracy is 4D cone-beam CT (CBCT) as it allows for visualization of tumor motion with reduced motion artifacts. However, acquisition and reconstruction of 4D CBCT differ from that of 4D CT. This study evaluates the discrepancies between the reconstructed motion of 4D CBCT and 4D CT imaging over a wide range of sine target motion parameters and patient waveforms. METHODS: A thorax motion phantom was used to examine 24 sine motions with varying amplitudes and cycle times and seven patient waveforms. Each programmed motion was imaged using 4D CT and 4D CBCT. The images were processed to auto segment the target. For sine motion, the target centroid at each phase was fitted to a sinusoidal curve to evaluate equivalence in amplitude between the two imaging modalities. The patient waveform motion was evaluated based on the average 4D data sets. RESULTS: The mean difference and root-mean-square-error between the two modalities for sine motion were -0.35 ± 0.22 and 0.60 mm, respectively, with 4D CBCT slightly overestimating amplitude compared with 4D CT. The two imaging methods were determined to be significantly equivalent within ±1 mm based on two one-sided t tests (p < 0.001). For patient-specific motion, the mean difference was 1.5 ± 2.1 (0.8 ± 0.6 without outlier), 0.4 ± 0.3, and 0.8 ± 0.6 mm for superior/inferior (SI), anterior/posterior (AP), and left/right (LR), respectively. CONCLUSION: In cases where 4D CT is used to image mobile tumors, 4D CBCT is an attractive localization method due to its assessment of motion with respect to 4D CT, particularly for lung SBRT treatments where accuracy is paramount.


Assuntos
Neoplasias Pulmonares , Radiocirurgia , Computadores , Tomografia Computadorizada de Feixe Cônico , Tomografia Computadorizada Quadridimensional , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Imagens de Fantasmas
5.
J Appl Clin Med Phys ; 22(4): 172-183, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33739569

RESUMO

PURPOSE: Studies have evaluated the viability of using open-face masks as an immobilization technique to treat intracranial and head and neck cancers. This method offers less stress to the patient with comparable accuracy to closed-face masks. Open-face masks permit implementation of surface guided radiation therapy (SGRT) to assist in positioning and motion management. Research suggests that changes in patient facial expressions may influence the SGRT system to generate false positional corrections. This study aims to quantify these errors produced by the SGRT system due to face motion. METHODS: Ten human subjects were immobilized using open-face masks. Four discrete SGRT regions of interest (ROIs) were analyzed based on anatomical features to simulate different mask openings. The largest ROI was lateral to the cheeks, superior to the eyebrows, and inferior to the mouth. The smallest ROI included only the eyes and bridge of the nose. Subjects were asked to open and close their eyes and simulate fear and annoyance and peak isocenter shifts were recorded. This was performed in both standard and SRS specific resolutions with the C-RAD Catalyst HD system. RESULTS: All four ROIs analyzed in SRS and Standard resolutions demonstrated an average deviation of 0.3 ± 0.3 mm for eyes closed and 0.4 ± 0.4 mm shift for eyes open, and 0.3 ± 0.3 mm for eyes closed and 0.8 ± 0.9 mm shift for eyes open. The average deviation observed due to changing facial expressions was 1.4 ± 0.9 mm for SRS specific and 1.6 ± 1.6 mm for standard resolution. CONCLUSION: The SGRT system can generate false positional corrections for face motion and this is amplified at lower resolutions and smaller ROIs. These errors should be considered in the overall tolerances and treatment plan when using open-face masks with SGRT and may warrant additional radiographic imaging.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioterapia Guiada por Imagem , Humanos , Máscaras , Movimento (Física) , Radiografia
6.
J Appl Clin Med Phys ; 22(10): 36-44, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34432944

RESUMO

PURPOSE: To develop a simplified aluminum compensator system for total body irradiation (TBI) that is easy to assemble and modify in a short period of time for customized patient treatments. METHODS: The compensator is composed of a combination of 0.3 cm thick aluminum bars, two aluminum T-tracks, spacers, and metal bolts. The system is mounted onto a plexiglass block tray. The design consists of 11 fixed sectors spanning from the patient's head to feet. The outermost sectors utilize 7.6 cm wide aluminum bars, while the remaining sectors use 2.5 cm wide aluminum bars. There is a magnification factor of 5 from the compensator to the patient treatment plane. Each bar of aluminum is interconnected at each adjacent sector with a tongue and groove arrangement and fastened to the T-track using a metal washer, bolt, and nut. Inter-bar leakage of the compensator was tested using a water tank and diode. End-to-end measurements were performed with an ion chamber in a solid water phantom and also with a RANDO phantom using internal and external optically stimulated luminescent detectors (OSLDs). In-vivo patient measurements from the first 20 patients treated with this aluminum compensator were compared to those from 20 patients treated with our previously used lead compensator system. RESULTS: The compensator assembly time was reduced to 20-30 min compared to the 2-4 h it would take with the previous lead design. All end-to-end measurements were within 10% of that expected. The median absolute in-vivo error for the aluminum compensator was 3.7%, with 93.8% of measurements being within 10% of that expected. The median error for the lead compensator system was 5.3%, with 85.1% being within 10% of that expected. CONCLUSION: This design has become the standard compensator at our clinic. It allows for quick assembly and customization along with meeting the Task Group 29 recommendations for dose uniformity.


Assuntos
Alumínio , Irradiação Corporal Total , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
7.
J Appl Clin Med Phys ; 21(9): 187-192, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32790207

RESUMO

PURPOSE: Prognostic indices such as the Brain Metastasis Graded Prognostic Assessment have been used in clinical settings to aid physicians and patients in determining an appropriate treatment regimen. These indices are derivative of traditional survival analysis techniques such as Cox proportional hazards (CPH) and recursive partitioning analysis (RPA). Previous studies have shown that by evaluating CPH risk with a nonlinear deep neural network, DeepSurv, patient survival can be modeled more accurately. In this work, we apply DeepSurv to a test case: breast cancer patients with brain metastases who have received stereotactic radiosurgery. METHODS: Survival times, censorship status, and 27 covariates including age, staging information, and hormone receptor status were provided for 1673 patients by the NCDB. Monte Carlo cross-validation with 50 samples of 1400 patients was used to train and validate the DeepSurv, CPH, and RPA models independently. DeepSurv was implemented with L2 regularization, batch normalization, dropout, Nesterov momentum, and learning rate decay. RPA was implemented as a random survival forest (RSF). Concordance indices of test sets of 140 patients were used for each sample to assess the generalizable predictive capacity of each model. RESULTS: Following hyperparameter tuning, DeepSurv was trained at 32 min per sample on a 1.33 GHz quad-core CPU. Test set concordance indices of 0.7488 ± 0.0049, 0.6251 ± 0.0047, and 0.7368 ± 0.0047, were found for DeepSurv, CPH, and RSF, respectively. A Tukey HSD test demonstrates a statistically significant difference between the mean concordance indices of the three models. CONCLUSION: Our results suggest that deep learning-based survival prediction can outperform traditional models, specifically in a case where an accurate prognosis is highly clinically relevant. We recommend that where appropriate data are available, deep learning-based prognostic indicators should be used to supplement classical statistics.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Radiocirurgia , Neoplasias Encefálicas/cirurgia , Humanos , Estudos Retrospectivos , Análise de Sobrevida
8.
J Appl Clin Med Phys ; 21(10): 40-47, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32779832

RESUMO

PURPOSE: To create an open-source visualization program that allows one to find potential cone collisions while planning intracranial stereotactic radiosurgery cases. METHODS: Measurements of physical components in the treatment room (gantry, cone, table, localization stereotactic radiation surgery frame, etc.) were incorporated into a script in MATLAB (MathWorks, Natick, MA) that produces three-dimensional visualizations of the components. A localization frame, used during simulation, fully contains the patient. This frame was used to represent a safety zone for collisions. Simple geometric objects are used to approximate the simulated components. The couch is represented as boxes, the gantry head and cone are represented by cylinders, and the patient safety zone can be represented by either a box or ellipsoid. These objects are translated and rotated based upon the beam geometry and the treatment isocenter to mimic treatment. A simple graphical user interface (GUI) was made in MATLAB (compatible with GNU Octave) to allow users to pass the treatment isocenter location, the initial and terminal gantry angles, the couch angle, and the number of angular points to visualize between the initial and terminal gantry angle. RESULTS: The GUI provides a fast and simple way to discover collisions in the treatment room before the treatment plan is completed. Twenty patient arcs were used as an end-to-end validation of the system. Seventeen of these appeared the same in the software as in the room. Three of the arcs appeared closer in the software than in the room. This is due to the treatment couch having rounded corners, whereas the software visualizes sharp corners. CONCLUSIONS: This simple GUI can be used to find the best orientation of beams for each patient. By finding collisions before a plan is being simulated in the treatment room, a user can save time due to replanning of cases.


Assuntos
Radiocirurgia , Simulação por Computador , Humanos , Imageamento Tridimensional , Planejamento da Radioterapia Assistida por Computador , Software
9.
J Appl Clin Med Phys ; 21(9): 107-115, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32681753

RESUMO

PURPOSE: Single-isocenter multiple brain metastasis stereotactic radiosurgery is an efficient treatment modality increasing in clinical practice. The need to provide accurate, patient-specific quality assurance (QA) for these plans is met by several options. This study reviews some of these options and explores the use of the Octavius 4D as a solution for patient-specific plan quality assurance. METHODS: The Octavius 4D Modular Phantom (O4D) with the 1000 SRS array was evaluated in this study. The array consists of 977 liquid-filled ion chambers. The center 5.5 cm × 5.5 cm area has a detector spacing of 2.5 mm. The ability of the O4D to reconstruct three-dimensional (3D) dose was validated against a 3D gel dosimeter, ion chamber, and film measurements. After validation, 15 patients with 2-11 targets had their plans delivered to the phantom. The criteria used for the gamma calculation was 3%/1 mm. The portion of targets which were measurable by the phantom was countable. The accompanying software compiled the measured doses allowing each target to be counted from the measured dose distribution. RESULTS: Spatial resolution was sufficient to verify the high dose distributions characteristic of SRS. Amongst the 15 patients there were 74 targets. Of the 74 targets, 61 (82%) of them were visible on the measured dose distribution. The average gamma passing rate was 99.3% (with sample standard deviation of 0.68%). CONCLUSIONS: The high resolution provided by the O4D with 1000 SRS board insert allows for very high-resolution measurement. This high resolution in turn can allow for high gamma passing rates. The O4D with the 1000 SRS array is an acceptable method of performing quality assurance for single-isocenter multiple brain metastasis SRS.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/cirurgia , Humanos , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Software
10.
J Appl Clin Med Phys ; 19(3): 64-70, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29520938

RESUMO

INTRODUCTION: A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. MATERIALS AND METHODS: The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. RESULTS: A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 µGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). CONCLUSION: A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iViewGT imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame.


Assuntos
Algoritmos , Tomografia Computadorizada de Feixe Cônico/normas , Neoplasias/radioterapia , Imagens de Fantasmas , Garantia da Qualidade dos Cuidados de Saúde/normas , Interpretação de Imagem Radiográfica Assistida por Computador/normas , Tomografia Computadorizada de Feixe Cônico/métodos , Humanos , Doses de Radiação , Raios X
11.
J Appl Clin Med Phys ; 19(5): 625-631, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30085393

RESUMO

PURPOSE: While external beam radiotherapy treatment planning determines nearly every mechanical and dosimetric parameter of the linear accelerator (LINAC), the table coordinates in all three dimensions are generally unknown until initial patient setup at the LINAC. Knowing these parameters in advance could help verify the direction of patient shifts and prevent wrong-site errors. This study aims to determine the feasibility and accuracy of table coordinate prediction for indexed immobilization devices. METHODS: A total of 303 table coordinates were predicted for patients on Varian and Elekta linear accelerators with immobilization devices including Orfit mask with baseplate, wingboard, breastboard and BodyFix. Predictions were made for all three spatial dimensions except for Body Fix setups due to the lack of a radiographically apparent indexing-related landmark. Coordinates were predicted by measuring baseline table coordinates in all dimensions at specified landmark positions. RESULTS: Predictions were accurate within 2 cm for 86% of coordinates (71% within 1 cm). Table coordinates were predicted most accurately for head and neck patients with a base plate and the most difficult prediction was in the lateral direction for breastboard patients. CONCLUSIONS: With proper indexing, table coordinates can be predicted with reasonable accuracy. The data suggest an action of level of 2 cm with certain exceptions for specific immobilization devices and directions.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Calibragem , Humanos , Aceleradores de Partículas , Radiometria
12.
J Appl Clin Med Phys ; 18(6): 58-61, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28901684

RESUMO

PURPOSE: Historically, the process of positioning a patient prior to imaging verification used a set of permanent patient marks, or tattoos, placed subcutaneously. After aligning to these tattoos, plan specific shifts are applied and the position is verified with imaging, such as cone-beam computed tomography (CBCT). Due to a variety of factors, these marks may deviate from the desired position or it may be hard to align the patient to these marks. Surface-based imaging systems are an alternative method of verifying initial positioning with the entire skin surface instead of tattoos. The aim of this study was to retrospectively compare the CBCT-based 3D corrections of patients initially positioned with tattoos against those positioned with the C-RAD CatalystHD surface imager system. METHODS: A total of 6000 individual fractions (600-900 per site per method) were randomly selected and the post-CBCT 3D corrections were calculated and recorded. For both positioning methods, four common treatment site combinations were evaluated: pelvis/lower extremities, abdomen, chest/upper extremities, and breast. Statistical differences were evaluated using a paired sample Wilcoxon signed-rank test with significance level of <0.01. RESULTS: The average magnitudes of the 3D shift vectors for tattoos were 0.9 ± 0.4 cm, 1.0 ± 0.5 cm, 0.9 ± 0.6 cm and 1.4 ± 0.7 cm for the pelvis/lower extremities, abdomen, chest/upper extremities and breast, respectively. For the CatalystHD, the average magnitude of the 3D shifts for the pelvis/lower extremities, abdomen, chest/upper extremities and breast were 0.6 ± 0.3 cm, 0.5 ± 0.3 cm, 0.5 ± 0.3 cm and 0.6 ± 0.2 cm, respectively. Statistically significant differences (P < 0.01) in the 3D shift vectors were found for all four sites. CONCLUSION: This study shows that the overall 3D shift corrections for patients initially aligned with the C-RAD CatalystHD were significantly smaller than those aligned with subcutaneous tattoos. Surface imaging systems can be considered a viable option for initial patient setup and may be preferable to permanent marks for specific clinics and patients.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/radioterapia , Posicionamento do Paciente , Planejamento da Radioterapia Assistida por Computador/métodos , Erros de Configuração em Radioterapia/prevenção & controle , Humanos , Radiometria/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
13.
Cureus ; 13(6): e15649, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34306859

RESUMO

Purpose The Elekta Active Breathing CoordinatorTM (ABC) is used to control breathing and guide deep inspiration breath hold (DIBH). It has been shown to be accurate in lung cancers, but limited analysis has been performed on the spatial accuracy and reproducibility of the breast surface. The use of optical surface-image guidance for patient positioning has grown in popularity and is an alternative solution for breast DIBH. This study aims to evaluate the breast surface variability of an ABC-guided DIBH by using a three-dimensional (3D) surface imaging system to record surface position. Methods Ten participants were placed in the treatment position, and breathing baselines and inhalation volume threshold baselines were monitored and recorded using the ABC. Over 60 minutes, the breathing patterns were recorded by the ABC and CatalystHDTM (C-RAD, Uppsala, Sweden). For each breath hold, the valve of the ABC closed at the baseline inhalation threshold and a 3D surface image was acquired. For each point on the baseline breast surface, a 3D vector was calculated to the subsequent breath hold surface as well as a root mean square (RMS) vector magnitude for the entire surface. Results The average and standard deviation for the RMS difference between the baseline and subsequent evaluated images were 7.12 ± 2.70 mm. Conclusion This study shows that while the ABC-guided inhalation volume is kept constant, a non-negligible variability of the breast surface position exists. Special considerations should be used in clinical situations, where the positioning of the surface is considered more important than inhalation volume.

14.
J Appl Clin Med Phys ; 11(2): 3185, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20592703

RESUMO

Electronic portal imaging devices (EPIDs) could potentially be useful for intensity-modulated radiation therapy (IMRT) QA. The data density, high resolution, large active area, and efficiency of the MV EPID make it an attractive option. However, EPIDs were designed as imaging devices, not dosimeters, and as a result they do not inherently measure dose in tissue equivalent media. EPIDose (Sun Nuclear, Melbourne, FL) is a tool designed for the use of EPIDs in IMRT QA that uses raw MV EPID images (no additional build-up and independent of gantry angle, but with dark and flood field corrections applied) to estimate absolute dose planes normal to the beam axis in a homogeneous media (i.e. similar to conventional IMRT QA methods). However, because of the inherent challenges of the EPID-based dosimetry, validating and commissioning such a system must be done very carefully, by exploring the range of use cases and using well-proven "standards" for comparison. In this work, a multi-institutional study was performed to verify accurate EPID image to dose plane conversion over a variety of conditions. Converted EPID images were compared to 2D diode array absolute dose measurements for 188 fields from 28 clinical IMRT treatment plans. These plans were generated using a number of commercially available treatment planning systems (TPS) covering various treatment sites including prostate, head and neck, brain, and lung. The data included three beam energies (6, 10, and 15 MV) and both step-and-shoot and dynamic MLC fields. Out of 26,207 points of comparison over 188 fields analyzed, the average overall field pass rate was 99.7% when 3 mm/3% DTA criteria were used (range 94.0-100 per field). The pass rates for more stringent criteria were 97.8% for 2mm/2% DTA (range 82.0-100 per field), and 84.6% for 1 mm/1% DTA (range 54.7-100 per field). Individual patient-specific sites as well, as different beam energies, followed similar trends to the overall pass rates.


Assuntos
Radiometria/instrumentação , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Algoritmos , Neoplasias Encefálicas/radioterapia , Calibragem , Desenho de Equipamento , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Íons , Neoplasias Pulmonares/radioterapia , Masculino , Aceleradores de Partículas , Imagens de Fantasmas , Neoplasias da Próstata/radioterapia , Dosagem Radioterapêutica
15.
J Med Phys ; 45(3): 143-147, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33487926

RESUMO

PURPOSE: Monaco treatment planning system (TPS) version 5.1 uses a Monte-Carlo (MC)-based dose calculation engine. The aim of this study is to verify and compare the Monaco-based dose calculations with both Pinnacle3 collapsed cone convolution superposition (CCCS) and Eclipse anisotropic analytical algorithm (AAA) calculations. MATERIALS AND METHODS: For this study, 18 previously treated lung and head-and-neck (HN) cancer patients were chosen to compare the dose calculations between Pinnacle, Monaco, and Eclipse. Plans were chosen from those that had been treated using the Elekta VersaHD or a Novalis Tx linac. All of the treated volumetric-modulated arc therapy plans used 6 MV or 10 MV photon beams. The original plans calculated with CCCS or AAA along with the recalculated ones using MC from the three TPS were exported into Velocity software for intercomparison. RESULTS: To compare the dose calculations, Planning target volume (PTV) heterogeneity indexes and conformity indexes were calculated from the dose volume histograms (DVH) of all plans. While mean lung dose (MLD), lung V5 and V20 values were recorded for lung plans, the computed dose to parotids, brainstem, and mandible were documented for HN plans. In plan evaluation, percent differences of the above dosimetric values in Monaco computation were compared against each of the other TPS computations. CONCLUSION: It could be concluded through this research that there can be differences in the calculation of dose across different TPSs. Although relatively small, these differences could become apparent when compared using DVH. These differences most likely arise from the different dose calculation algorithms used in each TPS. Monaco employs the MC allowing it to have much more detailed calculations that result in it being seen as the most accurate and the gold standard.

16.
J BUON ; 25(6): 2731-2736, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33455120

RESUMO

PURPOSE: To compare the accuracy of two separate models when calculating dose distributions in patients undergoing stereotactic radiosurgery (SRS) treatment for brain cancer. METHODS: For this comparison, two dose calculation algorithms were evaluated on two different treatment planning systems (TPS): Elekta's Monaco Version 5.11.00 Monte Carlo Gold Standard XVMC algorithm and Brainlab's iPlan Pencil Beam algorithm. The DICOM files of 11 patients with a total of 19 targets were exported from iPlan and then imported into Monaco to be recalculated. Using the dose distributions of the original (pencil beam/PB) and recalculated (Monte Carlo/MC) plans, four indices for plan quality were evaluated: coverage (Q), conformity index (CIRTOG), homogeneity index (HI), and gradient index (GI). RESULTS: There was a significant difference in the CIRTOG and HI between the two TPS calculations. However, the magnitude of these differences is often not substantial enough to cause the plan to fall outside of RTOG protocol deviation limits. Only 3 of the 19 targets had CIRTOG values which moved to a new level of deviation, and these targets were unique in terms of size (<0.1 cm3). CONCLUSION: It was found that the difference between systems is often not enough to cause the plan to fall outside of RTOG protocol deviation limits. This is an indication that a PB-based treatment planning system is sufficient for the mostly homogeneous conditions of intracranial SRS planning when the target is larger than 0.1 cm3. If below 0.1 cm3, the prescribing physician may need to evaluate TPS differences.


Assuntos
Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Método de Monte Carlo , Radiocirurgia/métodos , Humanos
17.
Med Phys ; 47(1): 260-266, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31660622

RESUMO

PURPOSE: The purpose of this work is to introduce a simple yet accurate technique to measure the dose enhancement factor (DEF) of a citrate-capped gold nanoparticle (GNP) solution using EBT3 film in an 192 Ir setup. METHODS: Dose enhancement factor is the ratio of absorbed dose in a solution compared to absorbed dose in water, assuming identical irradiation parameters. Citrate-capped GNPs were synthesized. An acrylic apparatus was constructed such that the EBT3 film was placed in charged particle equilibrium within the GNP solution with 0.28%, 0.56%, and 0.77% gold by mass. Sets of 12 dose measurements were collected for each GNP concentration as well as for water. The expected value of DEF was also calculated with the effective mass absorption coefficient of the GNP solution and water for an 192 Ir spectrum. Furthermore, Burlin cavity correction factors were calculated and experimentally verified. Experimental verification of the cavity correction was performed by measuring DEF using stacks of 1, 3, and 5 sheets of film and extrapolating the DEF to 0 sheets of film. RESULTS: Experimental cavity corrections agreed with those calculated with the Burlin cavity formalism. The calculated DEF was 1.013, 1.027, and 1.037 for the 0.28%, 0.56%, and 0.77% gold by mass GNP solutions, respectively. The corresponding uncorrected DEF measurement values were 1.013 ± 0.006, 1.024 ± 0.010, and 1.032 ± 0.006, respectively. When applying the Burlin cavity formalism, the final corrected DEF measurement values were 1.016 ± 0.006, 1.029 ± 0.010, and 1.039 ± 0.006, respectively. CONCLUSIONS: The experimental cavity correction results agreed with the theoretical Burlin calculations, which allowed for the Burlin corrections to be performed for all GNP concentrations and measured DEF values. The adjusted DEF values agreed with the theoretical calculations. Thus, these results indicate that a Burlin cavity calculation can be applied to correct film-based DEF measurements for 192 Ir.


Assuntos
Dosimetria Fotográfica , Ouro/química , Nanopartículas Metálicas , Ácido Cítrico/química
18.
Med Phys ; 46(3): 1397-1407, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30702748

RESUMO

PURPOSE: With the advent of volumetric modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques, the requirement for more elaborate approaches in reviewing linac components' integrity has become even more stringent. A possible solution to this challenge is to employ the usage of log files generated during treatment. The log files generated by the new generation of Elekta linacs record events at a higher frequency (25 Hz) than their predecessors, which allows for retrospective analysis and identification of subtle changes and provides another means of quality assurance. The ability to track machine components based on log files for each treatment can allow for constant monitoring of fraction consistency in addition to machine reliability. Using Elekta Agility log files, a set of tests were developed to evaluate the reliability and robustness of the multileaf collimators (MLCs). METHODS: To evaluate Elekta log file utilization for linac MLC QA effectiveness, five MLC test patterns were constructed to review the effects of leaf velocity and acceleration on positional accuracy, including gravitational effects for the Elekta MLC system. Each test was run five times in a particular setting to obtain reproducibility data and statistical averages. This study was performed on two identical Versa HD machines, each delivering a full set of test plans with all possible variations. Plans were delivered using Elekta's iCOMcat software and recorded log files were extracted. Log files were reformatted for readability and automatically analyzed in Matlab® . RESULTS: The Elekta Agility MLC system was shown to be capable of obtaining speeds within the range of 5-35 mm/s. MLC step and shoot tests have demonstrated the MLC system's capability of having positional repeatability, averaging 0.03- and 0.08-mm offsets with and without gravitational effects, respectively. The IMRT-specific tests have shown that gravitational effects are negligible with all positional tests averaging 0.5-mm offsets. The largest speed root-mean-square error (RMSE) for the MLC system was found at the maximum speed of 35 mm/s with an average error of 0.8 mm. For slower speeds, the value was found to be much lower. CONCLUSION: Utilizing log files has demonstrated the feasibility for higher precision of MLC motions to be reviewed, based on the performance tests that were instituted. Log files provide insight on the effects of friction, acceleration, and gravity, with MU's delivered that previously could not be reviewed in such detail. Based on our results, log file-based QA has enhanced our ability to review performance, functionality, and perform QA on Elekta's MLC system.


Assuntos
Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/instrumentação , Software , Humanos , Controle de Qualidade , Dosagem Radioterapêutica
19.
Phys Med ; 54: 146-151, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30337004

RESUMO

BACKGROUND AND PURPOSE: With the increasingly prominent role of stereotactic radiosurgery in radiation therapy, there is a clinical need for robust, efficient, and accurate solutions for targeting multiple sites with one patient setup. The end-to-end accuracy of high definition dynamic radiosurgery with Elekta treatment planning and delivery systems was investigated in this study. MATERIALS AND METHODS: A patient-derived CT scan was used to create a radiosurgery plan to seven targets in the brain. Monaco was used for treatment planning using 5 VMAT non-coplanar arcs. Prior to delivery, 3D-printed phantoms from RTsafe were ordered including a gel phantom for 3D dosimetry, phantom with 2D film insert, and an ion chamber phantom for point dose measurement. Delivery was performed using the Elekta VersaHD, XVI cone-beam CT, and HexaPOD six degree of freedom tabletop. RESULTS: Absolute dose accuracy was verified within 2%. 3D global gamma analysis in the film measurement revealed 3%/2 mm passing rates >95%. Gel dosimetry 3D global gamma analysis (3%/2 mm) were above 90% for all targets with the exception of one. Results were indicative of typical end-to-end accuracies (<1 mm spatial uncertainty, 2% dose accuracy) within 4 cm of isocenter. Beyond 4 cm, 2 mm accuracy was found. CONCLUSIONS: High definition dynamic radiosurgery expands clinically acceptable stereotactic accuracy to a sphere around isocenter allowing for radiosurgery of several targets with one setup with a high degree of dosimetric precision. Gel dosimetry proved to be an essential tool for the validation of the 3D dose distributions in this technique.


Assuntos
Radiocirurgia/métodos , Humanos , Imagens de Fantasmas , Radiometria , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
20.
Med Phys ; 45(7): 3460-3465, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29745994

RESUMO

PURPOSE: Many types of dosimeters are used to measure radiation dose and calibrate radiotherapy equipment, but none directly measure the biological effect of this dose. The purpose here is to create a dosimeter that can measure the probability of double-strand breaks (DSB) for DNA, which is directly related to the biological effect of radiation. METHODS: A DNA dosimeter, consisting of magnetic streptavidin beads attached to four kilobase pair DNA strands labeled with biotin and fluorescein amidite (FAM) on opposing ends, was suspended in phosphate-buffered saline (PBS). Fifty microliter samples were placed in plastic tubes inside a water tank setup and irradiated at the dose levels of 25, 50, 100, 150, and 200 Gy. After irradiation, the dosimeters were mechanically separated into beads (intact DNA) and supernatant (broken DNA/FAM) using a magnet. The fluorescence was read and the probability of DSB was calculated. This DNA dosimeter response was benchmarked against a Southern blot analysis technique for the measurement of DSB probability. RESULTS: For the DNA dosimeter, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.043, 0.081, 0.149, 0.196, and 0.242, respectively, and the standard errors of the mean were 0.002, 0.003, 0.006, 0.005, and 0.011, respectively. For the Southern blot method, the probabilities of DSB at the dose levels of 25, 50, 100, 150, and 200 Gy were 0.053, 0.105, 0.198, 0.235, and 0.264, respectively, and the standard errors of the mean were 0.013, 0.024, 0.040, 0.044, and 0.063, respectively. CONCLUSIONS: A DNA dosimeter can accurately determine the probability of DNA double-strand break (DSB), one of the most toxic effects of radiotherapy, for absorbed radiation doses from 25 to 200 Gy. This is an important step in demonstrating the viability of DNA dosimeters as a measurement technique for radiation.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos da radiação , Radiometria/métodos , Dosagem Radioterapêutica , Animais , Biotina , Southern Blotting , Desenho de Equipamento , Humanos , Probabilidade , Dosímetros de Radiação , Radiometria/instrumentação , Cloreto de Sódio , Estreptavidina , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA