Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Exp Med Biol ; 1451: 289-300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38801585

RESUMO

Monkeypox virus (MPXV) of poxviridae family causes a zoonotic disease called monkeypox (Mpox). MPXV cases have a fatality ratio ranging from 0 to 11% globally and have been more prevalent in children. There are three generations of smallpox vaccines that protect against MPXV. First and second generation of the vaccinia virus (VACV) vaccine protects MPXV. However, various adverse side effects were associated with the first and second generations of vaccines. In contrast, the Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) replication-incompetent vaccine shows fewer adverse effects and a significant amount of neutralizing antibodies in mammalian cells. A third-generation Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) was approved to prevent Mpox in 2019. Recently, MVA-BN-based Imvanex, Imvamune, and JYNNEOS vaccines have also been administered against MPXV. Globally, the World Health Organization (WHO) declared a global health emergency in May 2022 due to increased MPXV cases. Various computational studies have also designed a multi-epitope-based vaccine against the MPXV. In the multi-epitope-based vaccine, different epitopes like B-cell, Cytotoxic T Lymphocyte (CTL), CD8+, and CD4+ epitopes were derived from MPXV proteins. Further, these epitopes were linked with the help of various linkers to design a multi-epitope vaccine against MPXV. In summary, we have provided an overview of the current status of the vaccine against MPXV.


Assuntos
Monkeypox virus , Mpox , Vacina Antivariólica , Desenvolvimento de Vacinas , Humanos , Mpox/prevenção & controle , Mpox/imunologia , Animais , Monkeypox virus/imunologia , Monkeypox virus/genética , Vacina Antivariólica/imunologia , Anticorpos Neutralizantes/imunologia
2.
Comput Struct Biotechnol J ; 20: 3422-3438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832613

RESUMO

Hepatitis C virus (HCV) infection causes viral hepatitis leading to hepatocellular carcinoma. Despite the clinical use of direct-acting antivirals (DAAs) still there is treatment failure in 5-10% cases. Therefore, it is crucial to develop new antivirals against HCV. In this endeavor, we developed the "Anti-HCV" platform using machine learning and quantitative structure-activity relationship (QSAR) approaches to predict repurposed drugs targeting HCV non-structural (NS) proteins. We retrieved experimentally validated small molecules from the ChEMBL database with bioactivity (IC50/EC50) against HCV NS3 (454), NS3/4A (495), NS5A (494) and NS5B (1671) proteins. These unique compounds were divided into training/testing and independent validation datasets. Relevant molecular descriptors and fingerprints were selected using a recursive feature elimination algorithm. Different machine learning techniques viz. support vector machine, k-nearest neighbour, artificial neural network, and random forest were used to develop the predictive models. We achieved Pearson's correlation coefficients from 0.80 to 0.92 during 10-fold cross validation and similar performance on independent datasets using the best developed models. The robustness and reliability of developed predictive models were also supported by applicability domain, chemical diversity and decoy datasets analyses. The "Anti-HCV" predictive models were used to identify potential repurposing drugs. Representative candidates were further validated by molecular docking which displayed high binding affinities. Hence, this study identified promising repurposed drugs viz. naftifine, butalbital (NS3), vinorelbine, epicriptine (NS3/4A), pipecuronium, trimethaphan (NS5A), olodaterol and vemurafenib (NS5B) etc. targeting HCV NS proteins. These potential repurposed drugs may prove useful in antiviral drug development against HCV.

3.
Comput Biol Med ; 136: 104677, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34332351

RESUMO

Viral epidemics and pandemics are considered public health emergencies. However, traditional and novel antiviral discovery approaches are unable to mitigate them in a timely manner. Notably, drug repurposing emerged as an alternative strategy to provide antiviral solutions in a timely and cost-effective manner. In the literature, many FDA-approved drugs have been repurposed to inhibit viruses, while a few among them have also entered clinical trials. Using experimental data, we identified repurposed drugs against 14 viruses responsible for causing epidemics and pandemics such as SARS-CoV-2, SARS, Middle East respiratory syndrome, influenza H1N1, Ebola, Zika, Nipah, chikungunya, and others. We developed a novel computational "drug-target-drug" approach that uses the drug-targets extracted for specific drugs, which are experimentally validated in vitro or in vivo for antiviral activity. Furthermore, these extracted drug-targets were used to fetch the novel FDA-approved drugs for each virus and prioritize them by calculating their confidence scores. Pathway analysis showed that the majority of the extracted targets are involved in cancer and signaling pathways. For SARS-CoV-2, our method identified 21 potential repurposed drugs, of which 7 (e.g., baricitinib, ramipril, chlorpromazine, enalaprilat, etc.) have already entered clinical trials. The prioritized drug candidates were further validated using a molecular docking approach. Therefore, we anticipate success during the experimental validation of our predicted FDA-approved repurposed drugs against 14 viruses. This study will assist the scientific community in hastening research aimed at the development of antiviral therapeutics.


Assuntos
COVID-19 , Epidemias , Vírus da Influenza A Subtipo H1N1 , Preparações Farmacêuticas , Infecção por Zika virus , Zika virus , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2
4.
Comput Struct Biotechnol J ; 19: 3133-3148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34055238

RESUMO

The world is facing the COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Likewise, other viruses of the Coronaviridae family were responsible for causing epidemics earlier. To tackle these viruses, there is a lack of approved antiviral drugs. Therefore, we have developed robust computational methods to predict the repurposed drugs using machine learning techniques namely Support Vector Machine, Random Forest, k-Nearest Neighbour, Artificial Neural Network, and Deep Learning. We used the experimentally validated drugs/chemicals with anticorona activity (IC50/EC50) from 'DrugRepV' repository. The unique entries of SARS-CoV-2 (142), SARS (221), MERS (123), and overall Coronaviruses (414) were subdivided into the training/testing and independent validation datasets, followed by the extraction of chemical/structural descriptors and fingerprints (17968). The highly relevant features were filtered using the recursive feature selection algorithm. The selected chemical descriptors were used to develop prediction models with Pearson's correlation coefficients ranging from 0.60 to 0.90 on training/testing. The robustness of the predictive models was further ensured using external independent validation datasets, decoy datasets, applicability domain, and chemical analyses. The developed models were used to predict promising repurposed drug candidates against coronaviruses after scanning the DrugBank. Top predicted molecules for SARS-CoV-2 were further validated by molecular docking against the spike protein complex with ACE receptor. We found potential repurposed drugs namely Verteporfin, Alatrofloxacin, Metergoline, Rescinnamine, Leuprolide, and Telotristat ethyl with high binding affinity. These 'anticorona' computational models would assist in antiviral drug discovery against SARS-CoV-2 and other Coronaviruses.

5.
Front Microbiol ; 11: 1858, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849449

RESUMO

In December 2019, the Chinese city of Wuhan was the center of origin of a pneumonia-like disease outbreak with an unknown causative pathogen. The CDC, China, managed to track the source of infection to a novel coronavirus (2019-nCoV; SARS-CoV-2) that shares approximately 79.6% of its genome with SARS-CoV. The World Health Organization (WHO) initially declared COVID-19 as a Public Health Emergency of International Concern (PHEIC) and later characterized it as a global pandemic on March 11, 2020. Due to the novel nature of this virus, there is an urgent need for vaccines and therapeutics to control the spread of SARS-CoV-2 and its associated disease, COVID-19. Global efforts are underway to circumvent its further spread and treat COVID-19 patients through experimental vaccine formulations and therapeutic interventions, respectively. In the absence of any effective therapeutics, we have devised h bioinformatics-based approaches to accelerate global efforts in the fight against SARS-CoV-2 and to assist researchers in the initial phase of vaccine and therapeutics development. In this study, we have performed comprehensive meta-analyses and developed an integrative resource, "CoronaVR" (http://bioinfo.imtech.res.in/manojk/coronavr/). Predominantly, we identified potential epitope-based vaccine candidates, siRNA-based therapeutic regimens, and diagnostic primers. The resource is categorized into the main sections "Genomes," "Epitopes," "Therapeutics," and Primers." The genome section harbors different components, viz, genomes, a genome browser, phylogenetic analysis, codon usage, glycosylation sites, and structural analysis. Under the umbrella of epitopes, sub-divisions, namely cross-protective epitopes, B-cell (linear/discontinuous), T-cell (CD4+/CD8+), CTL, and MHC binders, are presented. The therapeutics section has different sub-sections like siRNA, miRNAs, and sgRNAs. Further, experimentally confirmed and designed diagnostic primers are earmarked in the primers section. Our study provided a set of shortlisted B-cell and T-cell (CD4+ and CD8+) epitopes that can be experimentally tested for their incorporation in vaccine formulations. The list of selected primers can be used in testing kits to identify SARS-CoV-2, while the recommended siRNAs, sgRNAs, and miRNAs can be used in therapeutic regimens. We foresee that this resource will help in advancing the research against coronaviruses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA