Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Vasc Res ; : 1-9, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38615659

RESUMO

BACKGROUND: Elevated mortality rates in patients with metabolic syndrome (MetS) are partly due to adverse remodeling of multiple organs, which may lead to cardiovascular disease, nonalcoholic fatty liver disease, kidney failure, or other conditions. MetS symptoms, such as obesity, hypertension, hyperglycemia, dyslipidemia, associated with insulin and leptin resistance, are recognized as major cardiovascular risk factors that adversely affect the heart. SUMMARY: Pathological cardiac remodeling is accompanied by endothelial cell dysfunction which may result in diminished coronary flow, dysregulated oxygen demand/supply balance, as well as vessel rarefaction. The reduced number of vessels and delayed or inhibited formation of collaterals after myocardial infarction in MetS heart may be due to unfavorable changes in endothelial cell metabolism but also to altered expression of vascular endothelial growth factor molecules, their receptors, and changes in signal transduction from the cell membrane, which severely affect angiogenesis. KEY MESSAGES: Given the established role of cardiac vessel endothelial cells in maintaining tissue homeostasis, defining the molecular background underlying vessel dysfunction associated with impaired angiogenesis is of great importance for future therapeutic purposes. Therefore, the aim of this paper was to present current information regarding vascular endothelial growth factor signaling in the myocardium of MetS individuals.

2.
Dev Biol ; 488: 1-10, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35533717

RESUMO

Macrophages are vital inhabitants of the developing heart. Nonetheless, their key role is not limited to prenatal processes, as embryo-derived macrophages govern the pool of cardiac macrophages also postnatally. Namely, embryonic cardiac macrophages are of yolk sac-, embryonic monocyte-, and heart-tissue origin. They persist, self-renew and/or are gradually replaced by blood monocytes and assume microenvironment-dependent macrophage phenotypes both in the pre- and postnatal heart. Still, it is during embryonic development that cardiac macrophages gain tissue-specific phenotypes and multifunctional diverse properties. Currently, with the emergence of newer research methods, novel facts about embryonic macrophage ontogeny, lifecycle, and repertoire of functions have been revealed. Meeting the high interest in cardiac macrophages, we present this up-to-date overview of embryonic cardiac macrophages, emphasizing the fundamental concepts and discrepancies related to macrophage characteristics, current research gaps, and potential future developments in this field.


Assuntos
Macrófagos , Monócitos , Embrião de Mamíferos , Coração , Saco Vitelino
3.
Curr Opin Hematol ; 29(3): 156-165, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35220321

RESUMO

PURPOSE OF REVIEW: The beneficial role of cardiac lymphatics in health and disease has begun to be recognized, with both preclinical and clinical evidence demonstrating that lymphangiogenesis is activated in cardiovascular diseases. This review aims to summarize our current understanding of the regulation and impact of cardiac lymphatic remodeling during development and in adult life, highlighting emerging concepts regarding distinguishing traits of cardiac lymphatic endothelial cells (LEC). RECENT FINDINGS: Genetic lineage-tracing and clonal analyses have revealed that a proportion of cardiac LECs originate from nonvenous sources. Further, these sources may vary between different regions of the heart, and could translate to differences in LEC sensitivity to molecular regulators. Several therapeutic approaches have been applied to investigate how lymphatics contribute to resolution of myocardial edema and inflammation in cardiovascular diseases. From these studies have emerged novel insights, notably concerning the cross-talk between lymphatics and cardiac interstitial cells, especially immune cells. SUMMARY: Recent years have witnessed a significant expansion in our knowledge of the molecular characteristics and regulation of cardiac lymphatics. The current body of work is in support of critical contributions of cardiac lymphatics to maintain both fluid and immune homeostasis in the heart.


Assuntos
Doenças Cardiovasculares , Vasos Linfáticos , Células Endoteliais , Coração/fisiologia , Humanos , Linfangiogênese/fisiologia , Vasos Linfáticos/fisiologia
4.
Heart Fail Rev ; 27(4): 1413-1430, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34387811

RESUMO

Macrophages are essential components of the immune system and play a role in the normal functioning of the cardiovascular system. Depending on their origin and phenotype, cardiac macrophages perform various functions. In a steady-state, these cells play a beneficial role in maintaining cardiac homeostasis by defending the body from pathogens and eliminating apoptotic cells, participating in electrical conduction, vessel patrolling, and arterial tone regulation. However, macrophages also take part in adverse cardiac remodeling that could lead to the development and progression of heart failure (HF) in such HF comorbidities as hypertension, obesity, diabetes, and myocardial infarction. Nevertheless, studies on detailed mechanisms of cardiac macrophage function are still in progress, and could enable potential therapeutic applications of these cells. This review aims to present the latest reports on the origin, heterogeneity, and functions of cardiac macrophages in the healthy heart and in cardiovascular diseases leading to HF. The potential therapeutic use of macrophages is also briefly discussed.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Coração , Homeostase , Humanos , Macrófagos , Miocárdio
5.
Int J Mol Sci ; 23(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36361979

RESUMO

Cardiac lymphatic vessel (LyV) remodeling as a contributor to heart failure has not been extensively evaluated in metabolic syndrome (MetS). Our studies have shown structural changes in cardiac LyV in MetS that contribute to the development of edema and lead to myocardial fibrosis. Tissue macrophages may affect LyV via secretion of various substances, including noncoding RNAs. The aim of the study was to evaluate the influence of macrophages modified by miR-31-5p, a molecule that regulates fibrosis and lymphangiogenesis, on lymphatic endothelial cells (LECs) in vitro. The experiments were carried out on the RAW 264.7 macrophage cell line and primary dermal lymphatic endothelial cells. RAW 264.7 macrophages were transfected with miR-31-5p and supernatant from this culture was used for LEC stimulation. mRNA expression levels for genes associated with lymphangiogenesis and fibrosis were measured with qRT-PCR. Selected results were confirmed with ELISA or Western blotting. miR-31-5p-modified RAW 264.7 macrophages secreted increased amounts of VEGF-C and TGF-ß and a decreased amount of IGF-1. The supernatant from miR-31-5p-modified RAW 264.7 downregulated the mRNA expression for genes regulating endothelial-to-mesenchymal transition (EndoMT) and fibrosis in LECs. Our results suggest that macrophages under the influence of miR-31-5p show the potential to inhibit LEC-dependent fibrosis. However, more studies are needed to confirm this effect in vivo.


Assuntos
Células Endoteliais , MicroRNAs , Células Endoteliais/metabolismo , Fibrose/genética , Fibrose/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fenótipo , RNA Mensageiro/metabolismo , Animais , Camundongos , Células RAW 264.7
6.
Histochem Cell Biol ; 155(1): 117-132, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33130914

RESUMO

The role of cardiac tissue macrophages (cTMs) during pre- and postnatal developmental stages remains in many aspects unknown. We aimed to characterize cTM populations and their potential functions based on surface markers. Our in situ studies of immunostained cardiac tissue specimens of murine fetuses (from E11to E17) revealed that a significant number of embryonic cTMs (phenotyped by CD45, CD68, CD64, F4/80, CD11b, CD206, Lyve-1) resided mostly in the subepicardial space, not in the entire myocardial wall, as observed in adult individuals. cTMs accompanied newly developed blood and lymphatic vessels adhering to vessel walls by cellular processes. A subpopulation of CD68-positive cells was found to form accumulations in areas of massive apoptosis during the outflow tract remodeling and shortening. Flow cytometry analysis at E14 and E17 stages revealed newly defined three subpopulations:CD64low, CD64highCD206-and CD64highCD206+. The levels of mRNA expression for genes related to regulation of angiogenesis (VEGFa, VEGFb, VEGFc, bFGF), lymphangiogenesis (VEGFc) and extracellular matrix (ECM) remodeling (MMP13, Arg1, Ym1/Chil3, Retlna/FIZZ1) differed among the selected populations and/or embryonic stages. Our results demonstrate a diversity of embryonic cTMs and their tissue-specific locations, suggesting their various potential roles in regulating angiogenesis, lymphangiogenesis and ECM remodeling.


Assuntos
Matriz Extracelular/metabolismo , Linfangiogênese , Macrófagos/metabolismo , Modelos Biológicos , Miocárdio/metabolismo , Neovascularização Fisiológica , Animais , Desenvolvimento Fetal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Miocárdio/citologia
7.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33672153

RESUMO

Cardiac macrophages are known from various activities, therefore we presume that microRNAs (miRNAs) produced or released by macrophages in cardiac tissue have impact on myocardial remodeling in individuals with metabolic syndrome (MetS). We aim to assess the cardiac macrophage miRNA profile by selecting those miRNA molecules that potentially exhibit regulatory functions in MetS-related cardiac remodeling. Cardiac tissue macrophages from control and db/db mice (an animal model of MetS) were counted and sorted with flow cytometry, which yielded two populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Total RNA was then isolated, and miRNA expression profiles were evaluated with Next Generation Sequencing. We successfully sequenced 1400 miRNAs in both macrophage populations: CD45+CD11b+CD64+Ly6Chi and CD45+CD11b+CD64+Ly6Clow. Among the 1400 miRNAs, about 150 showed different expression levels in control and db/db mice and between these two subpopulations. At least 15 miRNAs are possibly associated with MetS pathology in cardiac tissue due to direct or indirect regulation of the expression of miRNAs for proteins involved in angiogenesis, fibrosis, or inflammation. In this paper, for the first time we describe the miRNA transcription profile in two distinct macrophage populations in MetS-affected cardiac tissue. Although the results are preliminary, the presented data provide a foundation for further studies on intercellular cross-talk/molecular mechanism(s) involved in the regulation of MetS-related cardiac remodeling.


Assuntos
Macrófagos/fisiologia , Síndrome Metabólica/fisiopatologia , MicroRNAs/genética , Remodelação Ventricular/genética , Animais , Fibrose , Expressão Gênica , Hiperglicemia/genética , Macrófagos/patologia , Síndrome Metabólica/genética , Camundongos Endogâmicos C57BL , Camundongos Obesos , Miocardite/etiologia , Miocardite/genética , Miocardite/patologia , Miocárdio/patologia
8.
Basic Res Cardiol ; 115(4): 39, 2020 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-32451732

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous disease for which our pathophysiological understanding is still limited and specific prevention and treatment strategies are lacking. HFpEF is characterised by diastolic dysfunction and cardiac remodelling (fibrosis, inflammation, and hypertrophy). Recently, microvascular dysfunction and chronic low-grade inflammation have been proposed to participate in HFpEF development. Furthermore, several recent studies demonstrated the occurrence of generalized lymphatic dysfunction in experimental models of risk factors for HFpEF, including obesity, hypercholesterolaemia, type 2 diabetes mellitus (T2DM), hypertension, and aging. Here, we review the evidence for a combined role of coronary (micro)vascular dysfunction and lymphatic vessel alterations in mediating key pathological steps in HFpEF, including reduced cardiac perfusion, chronic low-grade inflammation, and myocardial oedema, and their impact on cardiac metabolic alterations (oxygen and nutrient supply/demand imbalance), fibrosis, and cardiomyocyte stiffness. We focus primarily on HFpEF caused by metabolic risk factors, such as obesity, T2DM, hypertension, and aging.


Assuntos
Endotélio Vascular/patologia , Insuficiência Cardíaca/fisiopatologia , Vasos Linfáticos/patologia , Envelhecimento/patologia , Animais , Diabetes Mellitus Tipo 2/complicações , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Humanos , Hipertensão/complicações , Microvasos/patologia , Obesidade/complicações
9.
Cell Biol Int ; 43(3): 265-278, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30597671

RESUMO

3D scaffolds represent an attractive substrate for studying macrophage activation and modification since they mimic extracellular matrix (ECM). However, macrophage response to such materials, particularly with respect to angiogenic potential is still poorly recognized. Therefore, we investigated the effect of 3D nanofibrous polystyrene scaffolds (NPSs) versus tissue culture polystyrene (TCPS) on THP-1-derived macrophages in various environmental conditions, for example, standard (m0), pro-inflammatory (m1), or anti-inflammatory (m2) with respect to pro-angiogenic potential. There were no differences in the expression of TNF-α and IL-10 mRNAs and respective proteins in cells cultured on NPSs compared with flat polystyrene (TCPS), however, NPSs induced an increased VEGF production by macrophages cultured in m0 and m1 media. Cells cultured in m1, and m2 conditions secreted elevated amounts of TNF-α and IL-10, respectively, irrespective of substrate surface geometry. Each macrophage population contains large, medium, and small cells. Moreover, there were significant differences in the proportion of large to small macrophages depending on the medium composition, that is, in m0, m1, and m2 media these proportions were 1:4, 1:3, and 1:10, respectively. The ultrastructure and the immunoexpression of TNF-α and IL-10 were analyzed under a confocal microscope. The results demonstrated differences in cell ultrastructure and suggested that the larger cells were pro-inflammatory macrophages, while the smaller cells were anti-inflammatory macrophages. In conclusion, NPSs activate macrophage pro-angiogenic potential. In addition, an increase in the proportion of pro-inflammatory macrophages relative to anti-inflammatory ones in a given population favors this potential.


Assuntos
Macrófagos/efeitos dos fármacos , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Poliestirenos/farmacologia , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Citocinas/genética , Citocinas/metabolismo , Humanos , Macrófagos/ultraestrutura , Nanofibras/ultraestrutura , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células THP-1 , Alicerces Teciduais/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
10.
Histochem Cell Biol ; 149(6): 577-591, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29549430

RESUMO

During embryonic development, hematopoietic cells are present in areas of blood-vessel differentiation. These hematopoietic cells emerge from a specific subpopulation of endothelial cells called the hemogenic endothelium. We have previously found that mouse proepicardium contained its own population of endothelial cells forming a network of vascular tubules. We hypothesize that this EC population contains cells of hematopoietic potential. Therefore, we investigated an in vitro hematopoietic potential of proepicardial cell populations. The CD31+/CD45-/CD71- cell population cultured for 10 days in MethocultTM gave numerous colonies of CFU-GEMM, CFU-GM, and CFU-E type. These colonies consisted of various cell types. Flk-1+/CD31-/CD45-/CD71-, and CD45+ and/or CD71+ cell populations produced CFU-GEMM and CFU-GM, or CFU-GM and CFU-E colonies, respectively. Immunohistochemical evaluations of smears prepared from colonies revealed the presence of cells of different hematopoietic lineages. These cells were characterized by labeling with various combinations of antibodies directed against CD31, CD41, CD71, c-kit, Mpl, Fli1, Gata-2, and Zeb1 markers. Furthermore, we found that proepicardium-specific marker WT1 co-localized with Runx1 and Zeb1 and that single endothelial cells bearing CD31 molecule expressed Runx1 in the proepicardial area of embryonic tissue sections. We have shown that cells of endothelial and/or hematopoietic phenotypes isolated from mouse proepicardium possess hematopoietic potential in vitro and in situ. These results are supported by RT-PCR analyses of proepicardial extract, which revealed the expression of mRNA for crucial regulatory factors for hemogenic endothelium specification, i.e., Runx1, Notch1, Gata2, and Sox17. Our data are in line with previous observation on hemangioblast derivation from the quail PE.


Assuntos
Células-Tronco Hematopoéticas/citologia , Pericárdio/citologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , RNA Mensageiro/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Cells Tissues Organs ; 203(3): 141-152, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27654624

RESUMO

Vasculogenesis was originally defined by Risau in 1997 [Nature 386: 671-674] as the de novo formation of vessels from endothelial progenitor cells (EPCs), so-called angioblasts. Initially, this process was believed to be related only to embryonic life; however, further studies reported vasculogenesis to occur also in adult tissues. This overview presents the current knowledge about the origin, differentiation and significance of EPCs that have been observed in various diseases, tumors, and reparative processes. We also summarize the knowledge of how to activate these cells for therapeutic purposes and the outcomes of the therapies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Neovascularização Fisiológica , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Desenvolvimento Embrionário , Células Progenitoras Endoteliais/citologia , Humanos
12.
J Vasc Res ; 53(1-2): 83-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27626281

RESUMO

Angiogenesis contributes to the generation of the vascular bed but also affects the progression of many diseases, such as tumor growth. Many details of the molecular pathways controlling angiogenesis are still undefined due to the lack of appropriate models. We propose the proepicardial explant as a suitable model for studying certain aspects of angiogenesis. The proepicardium (PE) is a transient embryonic structure that contains a population of undifferentiated endothelial cells (ECs) forming a vascular net continuous with the sinus venosus. In this paper, we show that PE explants give rise to CD31-positive vascular sprouts in the presence of basic fibroblast growth factor (bFGF) and 2 isoforms of vascular endothelial growth factor A (VEGF-A), i.e. VEGF-A120 and VEGF-A164. Vascular sprouts exhibit differences in number, length, thickness and the number of branches, depending on the combination of growth factors used. Moreover, the ECs of the sprouts express various levels of mRNA for Notch1 and its ligand Dll4. Additionally, stimulation with bFGF/VEGF-A164 upregulates the expression of Lyve-1 antigen in the ECs in the sprouts. In summary, we present a new model for angiogenesis studies involving mouse PE as a source of ECs. We believe that our model may act as a supplementary assay for angiogenesis studies along with the existing models.


Assuntos
Indutores da Angiogênese/farmacologia , Fator 2 de Crescimento de Fibroblastos/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Pericárdio/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Pericárdio/embriologia , Pericárdio/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Receptor EphB2/genética , Receptor EphB2/metabolismo , Receptor EphB4/genética , Receptor EphB4/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
13.
Histochem Cell Biol ; 143(2): 153-69, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25201347

RESUMO

Vasculogenesis and hematopoiesis are co-localized in the embryonic body, but precise phenotypes of the cells contributing to these processes are not defined. The aim of this study was to characterize phenotypic profiles and location of putative vasculogenic and hematopoietic cellular progenitors in the embryonic mouse heart. Confocal microscopy, as well as ultrastructural and stereomicroscopic analyses, was performed on immunohistochemical whole-mount-stained or sectioned hearts at stages 11.5-14 dpc. A FASC analysis was conducted to quantify putative vasculogenic and hematopoietic cells. We found subepicardial blood islands in the form of foci of accumulation of cells belonging to erythroblastic and megakaryocytic lineages at various stages of maturation, exhibiting phenotypes: GATA2(+)/CD41(+), GATA2(-)/CD41(+), GATA2(+)/CD71(-), GATA2(-)/CD71(+), Fli1(+)/CD71(+), Fli1(-)/CD71(+), with a majority of cells expressing the Ter119 antigen, but none of them expressing Flk1. The subepicardium and the outflow tract endothelium were recognized to be the areas where progenitor cells were scattered or adjoining the endothelial cells. These progenitor cells were characterized as possessing the following antigens: CD45(+)/Fli1(+), CD41(+)/Flk1(+), Flk1(+)/Fli1(+). A FACS analysis demonstrated that the CD41/Flk1 double-positive population of cells constituted 2.68% of total cell population isolated from 12.5 dpc hearts. Vessels and tubules were positive for CD31, Flk1, Fli1, Tie2, including blood islands endothelia. The endocardial wall endothelia were found to function as an anchoring apparatus for megakaryocytes releasing platelets into the cardiac cavities. Phenotypic characteristics of vasculogenic (Flk1(+)/Fli1(+)) and hematopoietic (GATA2(+)/CD71(+), CD41(+)/GATA2(+)) progenitors, as well as the putative hemogenic endothelium (Flk1(+)/CD41(+)) in embryonic mouse hearts, have been presented. Cardiac blood islands, the subepicardium and endothelium of the outflow tract cushions have been defined as areas where these progenitor cells can be found.


Assuntos
Coração/embriologia , Miocárdio/citologia , Células-Tronco/fisiologia , Animais , Biomarcadores/metabolismo , Hematopoese , Imuno-Histoquímica , Antígenos Comuns de Leucócito/metabolismo , Camundongos , Microscopia Eletrônica de Transmissão
14.
Microvasc Res ; 102: 54-69, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26277230

RESUMO

BACKGROUND: The proepicardium (PE), a transient embryonic structure crucial for the development of the epicardium and heart, contains its own population of endothelial cells (ECs). The aim of our study was to determine the pattern, anatomical orientation and phenotypic marker expression of the endothelial cell network within the PE. RESULTS: Immunohistochemical findings revealed that proepicardial ECs express both early and late EC-specific markers such as CD31, Flk-1, Lyve-1 and Tie-2 but not SCL/Tal1, vWF, Dll4 or Notch1. Proepicardial ECs are present in the vicinity of the sinus venosus (SV) and form a continuous network of vascular sprouts/tubules connected with the SV endothelium, with Ter-119-positive erythroblasts in the vascular lumina. CONCLUSIONS: On the basis of our results, we postulate the existence of a continuous network of ECs in the PE, exhibiting connection and/or patency with the SV and forming vessels/tubules/strands. Marker expression suggests that ECs are immature and undifferentiated, which was also confirmed with a transmission electron microscopy (TEM) analysis. Our results deliver new data for a better understanding of the nature of proepicardial ECs.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pericárdio/embriologia , Pericárdio/metabolismo , Animais , Biomarcadores/metabolismo , Diferenciação Celular , Feminino , Idade Gestacional , Glicoproteínas/metabolismo , Imageamento Tridimensional , Imuno-Histoquímica , Masculino , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Microscopia Eletrônica de Transmissão , Modelos Cardiovasculares , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Gravidez , Receptor TIE-2/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
15.
Histol Histopathol ; 39(1): 13-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37350542

RESUMO

Lymphatic vessels (LyVs), responsible for fluid, solute, and immune cell homeostasis in the body, are closely associated with the adjacent extracellular matrix (ECM) molecules whose structural and functional impact on LyVs is currently more appreciated, albeit not entirely elucidated. These molecules, serving as a platform for various connective tissue cell activities and affecting LyV biology should be considered also as an integral part of the lymphatic system. Any alterations and changes in ECM molecules over the course of disease impair the function and structure of the LyV network. Remodeling of LyV cells, which are components of lymphatic vessel walls, also triggers alterations in ECM molecules and interstitial tissue composition. Therefore, in this review we aimed to present the current knowledge on ECM in tissues and particularly on molecules surrounding lymphatics in normal conditions and in disease.


Assuntos
Vasos Linfáticos , Matriz Extracelular/química , Sistema Linfático , Tecido Conjuntivo , Células do Tecido Conjuntivo
16.
Postepy Hig Med Dosw (Online) ; 66: 901-12, 2012 Nov 19.
Artigo em Polonês | MEDLINE | ID: mdl-23175346

RESUMO

In this paper, we present literature results related to structure and various manners of lymphatic vessel formation during embryonic development and in pathological events, such as tumorigenesis, wound healing, and other diseases. The functions of the lymphatic system include the collection of fluids that enter tissues from the circulation, absorption of lipids and lipid-soluble vitamins from the intestine and their subsequent transport, participation in antigen, dendritic cell, and lymphocyte migration. The lymphatic system is also a route for tumor cell and inflammatory cell transport. Native lymphatic capillaries differ from blood capillaries by having an irregular lumen, a discontinuous basement membrane, absence of pericytes, and a strong anchorage of their endothelial cells to the extracellular matrix via microfibrils built of emilin and fibrillin. Lymphatic endothelial cells express surface antigens such as Lyve-1, podoplanin, VEGFR3 (Flk4) and transcription factor Prox-1, as well as molecules which are common for blood endothelial cells and lymphatic endothelial cells (CD31, CD34, Flk-1, Tie-1, Tie-2, neuropilin 2). Lymphatic vessel formation during embryonic development starts with the occurrence of lymphatic sacs sprouting from systemic jugular veins and/or by co-option of lymphangioblasts or hematopoietic-derived cells. It can also proceed by dedifferentiation of venous endothelial cells after their detachment from the venous system, migration to the target places within the body and assembly in the lymphatic lumen. Mechanisms of lymphatic vessel formation during embryonic development and in pathological conditions, such as tumorigenesis, wound healing, and metastasis, is regulated by a plethora of growth factors and molecules, among which the most important are VEGF-C, VEGF-D, HGF, FGF, retinoic acid, IL-3, and IL-7. Macrophages and cells bearing CD45 phenotype seem to take part in the formation of lymphatics. Macrophages might act as a source of growth factors and/or as modulators playing a role in vessel caliber regulation during lymphangiogenesis. We discuss the most important diseases of the lymphatic system, their molecular basis and tumors derived from lymphatic vessels. 


Assuntos
Vasos Linfáticos/embriologia , Vasos Linfáticos/patologia , Angiopoietinas/metabolismo , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Interleucina-3/metabolismo , Interleucina-7/metabolismo , Linfangiogênese/fisiologia , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuropilina-2/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Fator D de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
17.
Am J Pathol ; 176(6): 2658-68, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20519734

RESUMO

Recent case reports provided alarming signals that treatment with bortezomib might be associated with cardiac events. In all reported cases, patients experiencing cardiac problems were previously or concomitantly treated with other chemotherapeutics including cardiotoxic anthracyclines. Therefore, it is difficult to distinguish which components of the therapeutic regimens contribute to cardiotoxicity. Here, we addressed the influence of bortezomib on cardiac function in rats that were not treated with other drugs. Rats were treated with bortezomib at a dose of 0.2 mg/kg thrice weekly. Echocardiography, histopathology, and electron microscopy were used to evaluate cardiac function and structural changes. Respiration of the rat heart mitochondria was measured polarographically. Cell culture experiments were used to determine the influence of bortezomib on cardiomyocyte survival, contractility, Ca(2+) fluxes, induction of endoplasmic reticulum stress, and autophagy. Our findings indicate that bortezomib treatment leads to left ventricular contractile dysfunction manifested by a significant drop in left ventricle ejection fraction. Dramatic ultrastructural abnormalities of cardiomyocytes, especially within mitochondria, were accompanied by decreased ATP synthesis and decreased cardiomyocyte contractility. Monitoring of cardiac function in bortezomib-treated patients should be implemented to evaluate how frequently cardiotoxicity develops especially in patients with pre-existing cardiac conditions, as well as when using additional cardiotoxic drugs.


Assuntos
Antineoplásicos/toxicidade , Ácidos Borônicos/toxicidade , Cardiopatias/induzido quimicamente , Pirazinas/toxicidade , Animais , Antineoplásicos/farmacologia , Ácidos Borônicos/farmacologia , Bortezomib , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Ecocardiografia , Feminino , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/patologia , Mitocôndrias Cardíacas/fisiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Inibidores de Proteases/farmacologia , Inibidores de Proteases/toxicidade , Pirazinas/farmacologia , Ratos , Ratos Wistar , Disfunção Ventricular Esquerda/induzido quimicamente
18.
Postepy Biochem ; 57(4): 381-91, 2011.
Artigo em Polonês | MEDLINE | ID: mdl-22568170

RESUMO

Retinoids constitute a group of active compounds known as vitamin A. Apart from an unquestionable function in adults, retinoids also play a profound role in many events during embryonic development for instancje in axial patterning and organogenesis. Retinoic acid is the most active biological form of vitamin A. Its signaling both in adults and during embryonic development occurs at different levels through interaction with specific proteins and nuclear receptors. Retinoic acid signaling in heart development occurs mostly via interaction with secondary heart field cells by restricting their spatial expansion and controlling proper addition of these cells to the cardiac tube. This signal requires precise level of local retinoic acid, excess or insufficiency of which causes various malformations of the embryo and embryonic heart. Although retinoid signaling in the developing heart is a highly significant developmental factor, it is not yet fully understood. The following review summarises recent developments regarding this subject.


Assuntos
Coração/embriologia , Retinoides/metabolismo , Retinoides/farmacologia , Adulto , Humanos
19.
Trends Cardiovasc Med ; 31(6): 333-338, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592746

RESUMO

Here we describe various techniques for visualization of the lymphatic vasculature, particularly in the heart. Addressing macro-, microscopic, and molecular levels of lymphatic organization, we give examples of how to explore the roles of specific antigens/markers expressed in lymphatic vessels and their extracellular matrix as structural and functional elements involved in various biological functions of lymphatics. Some obstacles and technical challenges related to lymphatic visualization are also discussed.


Assuntos
Técnicas de Imagem Cardíaca , Cardiopatias/diagnóstico por imagem , Coração/diagnóstico por imagem , Doenças Linfáticas/diagnóstico por imagem , Sistema Linfático/diagnóstico por imagem , Linfografia , Microscopia , Biomarcadores/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Glicocálix/metabolismo , Glicocálix/patologia , Coração/fisiopatologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Doenças Linfáticas/metabolismo , Doenças Linfáticas/patologia , Doenças Linfáticas/fisiopatologia , Sistema Linfático/metabolismo , Sistema Linfático/patologia , Sistema Linfático/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Valor Preditivo dos Testes , Prognóstico
20.
Kardiol Pol ; 78(4): 364-373, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32336071

RESUMO

Many cardiovascular diseases lead to heart failure, which is a progressive syndrome causing significant distress and limiting the quality of life, despite optimal cardiologic treatment. It is estimated that about 26 000 people in Poland suffer from advanced heart failure, and this number is growing. That is why palliative care (PC) dedicated to people living with end­stage cardiac diseases should be urgently implemented in Poland. Well­organized PC may not only relieve symptoms and improve quality of life in people living with cardiac diseases not responding to treatment but also support patients and their families during the dying process. Palliative care in patients with cardiac diseases should be continued during the end-of-life period. It should be implemented regardless of prognosis, and adjusted to patients' needs. Two approaches to PC are presented in this expert opinion. The first one (generic) is provided by all medical professionals incorporating PC principles into the usual patient care. The second approach, namely, specialized PC, is ensured by a multiprofessional team or at least a PC specialist who received appropriate training in PC. The model of needs-based (not prognosis-based) implementation of PC is discussed in this paper. Symptom control, support in decision-making, and sensitive, open communication are considered integral elements of PC interventions. Medical professionals developing PC in Poland should think about groups of patients with special needs like those with valvular heart disease, grown­up congenital heart disease, and pulmonary arterial hypertension, as well as elderly people. This consensus document presents main recommendations for future PC organization in Poland. Among others, we suggest changing the Polish National Health Fund reimbursement rules regarding PC and improving cardiologist education on PC.


Assuntos
Insuficiência Cardíaca , Cuidados Paliativos , Idoso , Consenso , Insuficiência Cardíaca/terapia , Humanos , Polônia , Qualidade de Vida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA