Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(5): 537, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37012511

RESUMO

The port ecosystems are prone to deterioration due to the maritime and coastal activities and as a major source of the country's economy need efficient management. Phytoplankton communities can serve as reliable indicators of the prevailing environmental conditions due to their short life cycles. Seasonal sampling was conducted at 26 stations from October 2014 to February 2016 at Kandla port situated in a creek, along the west coast of India. The post-monsoon and monsoon water temperatures were higher (30 °C) whereas pre-monsoon were lower (21 °C). The salinity varied from polyhaline (18-30; monsoon) to euhaline (30 to 45; non-monsoon). The strong currents, high tidal activity, shallow depth areas, and the creek backwater systems make this ecosystem well-mixed and turbid. The annual average trophic index (TRIX) scores indicated very good water quality and low eutrophication, except during pre-monsoon (2.3 ± 0.7 to 4.1 ± 0.2). Based on the cell size, the phytoplankton community was classified into two main groups, i.e., nano-microphytoplankton, which comprised forty-seven species (represented by diatoms, dinoflagellates, and silicoflagellates) and picophytoplankton including two groups (picocyanophytes and picoeukaryotes). The diatoms and picophytoplankton dominated the total biomass and cell abundance, respectively. Only the picophytoplankton exhibited significant seasonal variations in cell abundance and carbon biomass. The lowest monsoon phytoplankton abundance coincided with high turbidity and vice versa during the post-monsoon. The hypersaline pre-monsoon environment with lower annual temperature, relatively lower turbid waters, and increased nutrients favoured higher diatom diversity. These conditions also supported potentially harmful Gymnodinium sp. and bloom-forming Tripos furca and Pyrophacus sp. Overall, ten non-toxic but bloom-forming species were observed. The study provides insights into the phytoplankton community's response to environmental conditions that can have repercussions on the ecosystem's functioning.


Assuntos
Diatomáceas , Dinoflagellida , Fitoplâncton/fisiologia , Ecossistema , Monitoramento Ambiental , Estações do Ano , Índia
2.
Environ Monit Assess ; 193(9): 548, 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34342737

RESUMO

The phytoplankton community structure exhibits seasonal and spatial variations in response to the environmental conditions, which aids in understanding the ecosystem's health. Given this, four samplings were conducted between October 2013 to April 2015, encompassing the monsoon, post-monsoon, and pre-monsoon seasons, from the Haldia port ecosystem of India. The samples were collected from the flowing estuary and an extended semi-enclosed dock. We hypothesized that the seasonal phytoplankton community (diversity, abundance, and carbon biomass) response will differ based on the environmental and hydrographical characteristics of the study site. Picophytoplankton and nano-microphytoplankton dominated the phytoplankton community in terms of numbers and biomass, respectively. Bacillariophytes dominated the nano-microphytoplankton abundance and total biomass, except during the monsoon when Dinophytes contributed (inner-zone). The dominance of Bacillariophytes and Chlorophytes in the outer-zone with picophytoplankton and Dinophytes in the inner-zone indicated group-specific hydrographic preferences that supported the hypothesis. The positive correlation of the picophytoplankton abundance (pre-monsoon) with Secchi disc depth and the negative correlation of diatoms (post-monsoon) with temperature signify the seasonal role of light and temperature, respectively. The highest nano-microphytoplankton species diversity (Shannon-Wiener's index) during the pre-monsoon (inner-zone) with more rare species indicated the probable influence of stable waters with increased water transparency. However, the community was unevenly distributed in the estuary due to the high abundance of the diatom, Aulacoseira granulata. Although harmful algal blooms were not detected, the higher temperature and nutrient concentrations could have favoured potentially harmful species (Pseudonitzschia delicatissima, Dinophysis acuta) during the monsoon. The system ranged from oligo- to mesotrophic state with moderate pollution levels (Carlson's Trophic State Index and Shannon's Index), indicating a reduction of the nutrient accumulation effects by the existing water renewal frequency. This study recommends incorporating qualitative and quantitative phytoplankton assessment in ecological monitoring of the stable coastal sites to prevent future harmful algal episodes.


Assuntos
Ecossistema , Fitoplâncton , Monitoramento Ambiental , Estuários , Índia , Rios , Estações do Ano , Água do Mar
3.
Environ Monit Assess ; 190(8): 481, 2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30039305

RESUMO

Seasonal and spatial phytoplankton distribution in relation to environmental factors was investigated in New Mangalore Port, a major port along the west coast of India. A well-mixed water column characterized the non-monsoon seasons, whereas it was weakly stratified during monsoon. Water quality index (TRIX) scores indicated good water quality except during pre-monsoon (inner zone surface) and monsoon (near bottom waters). Surface abundance of tychopelagic diatoms (Paralia sulcata, Melosira nummuloides, Cylindrotheca closterium, and Nitzschia sigma) was higher during non-monsoon seasons. Certain centric diatoms, e.g., Leptocylindrus danicus, P. sulcata, and Rhizosolenia imbricata, dominated during pre-monsoon (inner zone) and positively correlated with TRIX. High Skeletonema costatum and dinoflagellate abundance during the monsoon season coincided with high nutrient concentrations. Five potential toxic and fourteen harmful/bloom forming algal species were encountered at abundances below the level that can be considered as harmful to the ecosystem. In addition to a baseline database, this study highlights the potential use of certain diatom species as indicators of hydrography and water quality for monitoring dynamic coastal marine ecosystems.


Assuntos
Monitoramento Ambiental , Fitoplâncton/classificação , Biodiversidade , Diatomáceas , Dinoflagellida , Ecossistema , Índia , Fitoplâncton/crescimento & desenvolvimento , Estações do Ano , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA