Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 184(18): 4680-4696.e22, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380047

RESUMO

Mutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation. Notably, a capacity for condensation was required for efficient TDP-43 assembly on subsets of RNA-binding regions, which contain unusually long clusters of motifs of characteristic types and density. These "binding-region condensates" are promoted by homomeric CTD-driven interactions and required for efficient regulation of a subset of bound transcripts, including autoregulation of TDP-43 mRNA. We establish that RBP condensation can occur in a binding-region-specific manner to selectively modulate transcriptome-wide RNA regulation, which has implications for remodeling RNA networks in the context of signaling, disease, and evolution.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Mutação/genética , Motivos de Nucleotídeos/genética , Transição de Fase , Mutação Puntual/genética , Poli A/metabolismo , Ligação Proteica , Multimerização Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência
2.
Mol Cell ; 70(4): 588-601.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29754822

RESUMO

Huntington's disease is caused by an abnormally long polyglutamine tract in the huntingtin protein. This leads to the generation and deposition of N-terminal exon1 fragments of the protein in intracellular aggregates. We combined electron tomography and quantitative fluorescence microscopy to analyze the structural and material properties of huntingtin exon1 assemblies in mammalian cells, in yeast, and in vitro. We found that huntingtin exon1 proteins can form reversible liquid-like assemblies, a process driven by huntingtin's polyQ tract and proline-rich region. In cells and in vitro, the liquid-like assemblies converted to solid-like assemblies with a fibrillar structure. Intracellular phase transitions of polyglutamine proteins could play a role in initiating irreversible pathological aggregation.


Assuntos
Proteína Huntingtina/química , Doença de Huntington/patologia , Peptídeos/química , Transição de Fase , Agregação Patológica de Proteínas/patologia , Éxons , Células HEK293 , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/metabolismo , Peptídeos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/metabolismo , Saccharomyces cerevisiae
3.
EMBO J ; 29(7): 1248-61, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20186122

RESUMO

Fragile X-associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder caused by expansion of 55-200 CGG repeats in the 5'-UTR of the FMR1 gene. FXTAS is characterized by action tremor, gait ataxia and impaired executive cognitive functioning. It has been proposed that FXTAS is caused by titration of RNA-binding proteins by the expanded CGG repeats. Sam68 is an RNA-binding protein involved in alternative splicing regulation and its ablation in mouse leads to motor coordination defects. Here, we report that mRNAs containing expanded CGG repeats form large and dynamic intranuclear RNA aggregates that recruit several RNA-binding proteins sequentially, first Sam68, then hnRNP-G and MBNL1. Importantly, Sam68 is sequestered by expanded CGG repeats and thereby loses its splicing-regulatory function. Consequently, Sam68-responsive splicing is altered in FXTAS patients. Finally, we found that regulation of Sam68 tyrosine phosphorylation modulates its localization within CGG aggregates and that tautomycin prevents both Sam68 and CGG RNA aggregate formation. Overall, these data support an RNA gain-of-function mechanism for FXTAS neuropathology, and suggest possible target routes for treatment options.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Processamento Alternativo , Proteínas de Ligação a DNA/metabolismo , Síndrome do Cromossomo X Frágil/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/análise , Animais , Ataxia/genética , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteínas de Ligação a DNA/análise , Inibidores Enzimáticos/farmacologia , Síndrome do Cromossomo X Frágil/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Camundongos , Fosforilação , Piranos/farmacologia , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/análise , Sequências Repetitivas de Ácido Nucleico , Compostos de Espiro/farmacologia , Tirosina/metabolismo
4.
Nat Biomed Eng ; 6(2): 207-220, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35145256

RESUMO

Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease whose pathogenesis stems from the functional loss of muscleblind-like RNA-binding proteins (RBPs), which causes the formation of alternative-splicing defects. The loss of functional muscleblind-like protein 1 (MBNL1) results from its nuclear sequestration by mutant transcripts containing pathogenic expanded CUG repeats (CUGexp). Here we show that an RBP engineered to act as a decoy for CUGexp reverses the toxicity of the mutant transcripts. In vitro, the binding of the RBP decoy to CUGexp in immortalized muscle cells derived from a patient with DM1 released sequestered endogenous MBNL1 from nuclear RNA foci, restored MBNL1 activity, and corrected the transcriptomic signature of DM1. In mice with DM1, the local or systemic delivery of the RBP decoy via an adeno-associated virus into the animals' skeletal muscle led to the long-lasting correction of the splicing defects and to ameliorated disease pathology. Our findings support the development of decoy RBPs with high binding affinities for expanded RNA repeats as a therapeutic strategy for myotonic dystrophies.


Assuntos
Distrofia Miotônica , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Humanos , Camundongos , Músculo Esquelético/metabolismo , Distrofia Miotônica/genética , Distrofia Miotônica/metabolismo , Distrofia Miotônica/terapia , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
5.
Front Neurol ; 9: 361, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29875732

RESUMO

Myotonic dystrophy type 1 (DM1 also known as Steinert disease) is a multisystemic disorder mainly characterized by myotonia, progressive muscle weakness and wasting, cognitive impairments, and cardiac defects. This autosomal dominant disease is caused by the expression of nuclear retained RNAs containing pathologic expanded CUG repeats that alter the function of RNA-binding proteins in a tissue-specific manner, leading ultimately to neuromuscular dysfunction and clinical symptoms. Although considerable knowledge has been gathered on myotonic dystrophy since its first description, the development of novel relevant disease models remains of high importance to investigate pathophysiologic mechanisms and to assess new therapeutic approaches. In addition to animal models, in vitro cell cultures provide a unique resource for both fundamental and translational research. This review discusses how cellular models broke ground to decipher molecular basis of DM1 and describes currently available cell models, ranging from exogenous expression of the CTG tracts to variable patients' derived cells.

6.
Dis Model Mech ; 10(4): 487-497, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28188264

RESUMO

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Músculo Esquelético/patologia , Distrofia Miotônica/tratamento farmacológico , Distrofia Miotônica/patologia , Adulto , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Linhagem Celular Transformada , Criança , Feminino , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteína MyoD/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , RNA/metabolismo
7.
Skelet Muscle ; 6: 23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441081

RESUMO

BACKGROUND: The greater susceptibility to contraction-induced skeletal muscle injury (fragility) is an important dystrophic feature and tool for testing preclinic dystrophin-based therapies for Duchenne muscular dystrophy. However, how these therapies reduce the muscle fragility is not clear. METHODS: To address this question, we first determined the event(s) of the excitation-contraction cycle which is/are altered following lengthening (eccentric) contractions in the mdx muscle. RESULTS: We found that the immediate force drop following lengthening contractions, a widely used measure of muscle fragility, was associated with reduced muscle excitability. Moreover, the force drop can be mimicked by an experimental reduction in muscle excitation of uninjured muscle. Furthermore, the force drop was not related to major neuromuscular transmission failure, excitation-contraction uncoupling, and myofibrillar impairment. Secondly, and importantly, the re-expression of functional truncated dystrophin in the muscle of mdx mice using an exon skipping strategy partially prevented the reductions in both force drop and muscle excitability following lengthening contractions. CONCLUSION: We demonstrated for the first time that (i) the increased susceptibility to contraction-induced muscle injury in mdx mice is mainly attributable to reduced muscle excitability; (ii) dystrophin-based therapy improves fragility of the dystrophic skeletal muscle by preventing reduction in muscle excitability.


Assuntos
Distrofina/metabolismo , Acoplamento Excitação-Contração , Terapia Genética , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/terapia , RNA Nuclear Pequeno/genética , Potenciais de Ação , Animais , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/genética , Predisposição Genética para Doença , Vetores Genéticos , Camundongos Endogâmicos mdx , Força Muscular , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Fenótipo , RNA Nuclear Pequeno/metabolismo , Fatores de Tempo , Regulação para Cima
8.
Nat Commun ; 7: 11067, 2016 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-27063795

RESUMO

Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.


Assuntos
Processamento Alternativo/genética , Arritmias Cardíacas/complicações , Arritmias Cardíacas/genética , Sistema de Condução Cardíaco/fisiopatologia , Distrofia Miotônica/complicações , Distrofia Miotônica/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Adulto , Idoso , Animais , Sequência de Bases , Sítios de Ligação , Simulação por Computador , Fenômenos Eletrofisiológicos , Éxons/genética , Feminino , Células HEK293 , Sistema de Condução Cardíaco/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Motivos de Nucleotídeos/genética , Proteínas de Ligação a RNA/metabolismo , Canais de Sódio/metabolismo , Xenopus
9.
Nat Commun ; 6: 7205, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018658

RESUMO

Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.


Assuntos
Distrofina/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/genética , Distrofia Miotônica/genética , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Proteínas de Peixe-Zebra/genética , Animais , Cromatografia Líquida , Distrofina/metabolismo , Éxons , Homeostase , Humanos , Imuno-Histoquímica , Imunoprecipitação , Proteínas de Membrana/metabolismo , Camundongos , Microscopia Eletrônica , Fibras Musculares Esqueléticas/ultraestrutura , Proteínas Musculares/metabolismo , Distrofia Miotônica/patologia , Reação em Cadeia da Polimerase em Tempo Real , Retículo Sarcoplasmático/ultraestrutura , Espectrometria de Massas em Tandem , Proteínas de Peixe-Zebra/metabolismo
10.
Nat Struct Mol Biol ; 18(7): 840-5, 2011 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-21685920

RESUMO

Myotonic dystrophy is an RNA gain-of-function disease caused by expanded CUG or CCUG repeats, which sequester the RNA binding protein MBNL1. Here we describe a newly discovered function for MBNL1 as a regulator of pre-miR-1 biogenesis and find that miR-1 processing is altered in heart samples from people with myotonic dystrophy. MBNL1 binds to a UGC motif located within the loop of pre-miR-1 and competes for the binding of LIN28, which promotes pre-miR-1 uridylation by ZCCHC11 (TUT4) and blocks Dicer processing. As a consequence of miR-1 loss, expression of GJA1 (connexin 43) and CACNA1C (Cav1.2), which are targets of miR-1, is increased in both DM1- and DM2-affected hearts. CACNA1C and GJA1 encode the main calcium- and gap-junction channels in heart, respectively, and we propose that their misregulation may contribute to the cardiac dysfunctions observed in affected persons.


Assuntos
MicroRNAs/metabolismo , Distrofia Miotônica/genética , Proteínas de Ligação a RNA/fisiologia , Ligação Competitiva , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Humanos , MicroRNAs/química , Modelos Genéticos , Distrofia Miotônica/metabolismo , Conformação de Ácido Nucleico , Processamento Pós-Transcricional do RNA , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/fisiologia , Expansão das Repetições de Trinucleotídeos , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA