Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 163(5): 1108-1123, 2015 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-26582131

RESUMO

Viral protein homeostasis depends entirely on the machinery of the infected cell. Accordingly, viruses can illuminate the interplay between cellular proteostasis components and their distinct substrates. Here, we define how the Hsp70 chaperone network mediates the dengue virus life cycle. Cytosolic Hsp70 isoforms are required at distinct steps of the viral cycle, including entry, RNA replication, and virion biogenesis. Hsp70 function at each step is specified by nine distinct DNAJ cofactors. Of these, DnaJB11 relocalizes to virus-induced replication complexes to promote RNA synthesis, while DnaJB6 associates with capsid protein and facilitates virion biogenesis. Importantly, an allosteric Hsp70 inhibitor, JG40, potently blocks infection of different dengue serotypes in human primary blood cells without eliciting viral resistance or exerting toxicity to the host cells. JG40 also blocks replication of other medically-important flaviviruses including yellow fever, West Nile and Japanese encephalitis viruses. Thus, targeting host Hsp70 subnetworks provides a path for broad-spectrum antivirals.


Assuntos
Dengue/virologia , Proteínas de Choque Térmico HSP70/metabolismo , Replicação Viral , Animais , Proteínas do Capsídeo/metabolismo , Culicidae/virologia , Dengue/metabolismo , Vírus da Dengue , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Humanos , Replicação Viral/efeitos dos fármacos
2.
Nature ; 580(7803): 381-385, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296178

RESUMO

The spread of protein aggregates during disease progression is a common theme underlying many neurodegenerative diseases. The microtubule-associated protein tau has a central role in the pathogenesis of several forms of dementia known as tauopathies-including Alzheimer's disease, frontotemporal dementia and chronic traumatic encephalopathy1. Progression of these diseases is characterized by the sequential spread and deposition of protein aggregates in a predictable pattern that correlates with clinical severity2. This observation and complementary experimental studies3,4 have suggested that tau can spread in a prion-like manner, by passing to naive cells in which it templates misfolding and aggregation. However, although the propagation of tau has been extensively studied, the underlying cellular mechanisms remain poorly understood. Here we show that the low-density lipoprotein receptor-related protein 1 (LRP1) controls the endocytosis of tau and its subsequent spread. Knockdown of LRP1 significantly reduced tau uptake in H4 neuroglioma cells and in induced pluripotent stem cell-derived neurons. The interaction between tau and LRP1 is mediated by lysine residues in the microtubule-binding repeat region of tau. Furthermore, downregulation of LRP1 in an in vivo mouse model of tau spread was found to effectively reduce the propagation of tau between neurons. Our results identify LRP1 as a key regulator of tau spread in the brain, and therefore a potential target for the treatment of diseases that involve tau spread and aggregation.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular , Endocitose , Feminino , Humanos , Ligantes , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Masculino , Camundongos , Neurônios/metabolismo
3.
J Biol Chem ; 299(12): 105450, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949225

RESUMO

Protein folding, quality control, maturation, and trafficking are essential processes for proper cellular homeostasis. Around one-third of the human proteome is targeted to the endoplasmic reticulum (ER), the organelle that serves as entrance into the secretory pathway. Successful protein trafficking is paramount for proper cellular function and to that end there are many ER resident proteins that ensure efficient secretion. Here, biochemical and cell biological analysis was used to determine that TTC17 is a large, soluble, ER-localized protein that plays an important role in secretory trafficking. Transcriptional analysis identified the predominantly expressed protein isoform of TTC17 in various cell lines. Further, TTC17 localizes to the ER and interacts with a wide variety of chaperones and cochaperones normally associated with ER protein folding, quality control, and maturation processes. TTC17 was found to be significantly upregulated by ER stress and through the creation and use of TTC17-/- cell lines, quantitative mass spectrometry identified secretory pathway wide trafficking defects in the absence of TTC17. Notably, trafficking of insulin-like growth factor type 1 receptor, glycoprotein nonmetastatic melanoma protein B, clusterin, and UDP-glucose:glycoprotein glucosyltransferase 1 were significantly altered in H4 neuroglioma cells. This study defines a novel ER trafficking factor and provides insight into the protein-protein assisted trafficking in the early secretory pathway.


Assuntos
Estresse do Retículo Endoplasmático , Dobramento de Proteína , Humanos , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Glicoproteínas/metabolismo , Linhagem Celular
4.
J Clin Microbiol ; 59(4)2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478979

RESUMO

The COVID-19 pandemic has created massive demand for widespread, distributed tools for detecting SARS-CoV-2 genetic material. The hurdles to scalable testing include reagent and instrument accessibility, availability of highly trained personnel, and large upfront investment. Here, we showcase an orthogonal pipeline we call CREST (Cas13-based, rugged, equitable, scalable testing) that addresses some of these hurdles. Specifically, CREST pairs commonplace and reliable biochemical methods (PCR) with low-cost instrumentation, without sacrificing detection sensitivity. By taking advantage of simple fluorescence visualizers, CREST allows a binary interpretation of results. CREST may provide a point-of-care solution to increase the distribution of COVID-19 surveillance.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase
5.
Bioorg Med Chem ; 34: 115990, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33549906

RESUMO

Destabilizing mutations in small heat shock proteins (sHsps) are linked to multiple diseases; however, sHsps are conformationally dynamic, lack enzymatic function and have no endogenous chemical ligands. These factors render sHsps as classically "undruggable" targets and make it particularly challenging to identify molecules that might bind and stabilize them. To explore potential solutions, we designed a multi-pronged screening workflow involving a combination of computational and biophysical ligand-discovery platforms. Using the core domain of the sHsp family member Hsp27/HSPB1 (Hsp27c) as a target, we applied mixed solvent molecular dynamics (MixMD) to predict three possible binding sites, which we confirmed using NMR-based solvent mapping. Using this knowledge, we then used NMR spectroscopy to carry out a fragment-based drug discovery (FBDD) screen, ultimately identifying two fragments that bind to one of these sites. A medicinal chemistry effort improved the affinity of one fragment by ~50-fold (16 µM), while maintaining good ligand efficiency (~0.32 kcal/mol/non-hydrogen atom). Finally, we found that binding to this site partially restored the stability of disease-associated Hsp27 variants, in a redox-dependent manner. Together, these experiments suggest a new and unexpected binding site on Hsp27, which might be exploited to build chemical probes.


Assuntos
Proteínas de Choque Térmico/química , Modelos Químicos , Chaperonas Moleculares/química , Simulação de Dinâmica Molecular , Sítios de Ligação , Modelos Moleculares , Mutação , Conformação Proteica , Domínios Proteicos , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 115(52): 13234-13239, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30538196

RESUMO

Amyloid fibrils are cross-ß-rich aggregates that are exceptionally stable forms of protein assembly. Accumulation of tau amyloid fibrils is involved in many neurodegenerative diseases, including Alzheimer's disease (AD). Heparin-induced aggregates have been widely used and assumed to be a good tau amyloid fibril model for most biophysical studies. Here we show that mature fibrils made of 4R tau variants, prepared with heparin or RNA, spontaneously depolymerize and release monomers when their cofactors are removed. We demonstrate that the cross-ß-sheet assembly formed in vitro with polyanion addition is unstable at room temperature. We furthermore demonstrate high seeding capacity with transgenic AD mouse brain-extracted tau fibrils in vitro that, however, is exhausted after one generation, while supplementation with RNA cofactors resulted in sustained seeding over multiple generations. We suggest that tau fibrils formed in brains are supported by unknown cofactors and inhere higher-quality packing, as reflected in a more distinct conformational arrangement in the mouse fibril-seeded, compared with heparin-induced, tau fibrils. Our study suggests that the role of cofactors in tauopathies is a worthy focus of future studies, as they may be viable targets for diagnosis and therapeutics.


Assuntos
Doença de Alzheimer/patologia , Amiloide/química , Encéfalo/patologia , Heparina/química , RNA/química , Proteínas Recombinantes/química , Proteínas tau/química , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Animais , Encéfalo/metabolismo , Heparina/metabolismo , Camundongos , Camundongos Transgênicos , Conformação Proteica , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas tau/metabolismo
7.
PLoS Biol ; 15(7): e2002183, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28683104

RESUMO

Nonmembrane-bound organelles that behave like liquid droplets are widespread among eukaryotic cells. Their dysregulation appears to be a critical step in several neurodegenerative conditions. Here, we report that tau protein, the primary constituent of Alzheimer neurofibrillary tangles, can form liquid droplets and therefore has the necessary biophysical properties to undergo liquid-liquid phase separation (LLPS) in cells. Consonant with the factors that induce LLPS, tau is an intrinsically disordered protein that complexes with RNA to form droplets. Uniquely, the pool of RNAs to which tau binds in living cells are tRNAs. This phase state of tau is held in an approximately 1:1 charge balance across the protein and the nucleic acid constituents, and can thus be maximal at different RNA:tau mass ratios, depending on the biopolymer constituents involved. This feature is characteristic of complex coacervation. We furthermore show that the LLPS process is directly and sensitively tuned by salt concentration and temperature, implying it is modulated by both electrostatic interactions between the involved protein and nucleic acid constituents, as well as net changes in entropy. Despite the high protein concentration within the complex coacervate phase, tau is locally freely tumbling and capable of diffusing through the droplet interior. In fact, tau in the condensed phase state does not reveal any immediate changes in local protein packing, local conformations and local protein dynamics from that of tau in the dilute solution state. In contrast, the population of aggregation-prone tau as induced by the complexation with heparin is accompanied by large changes in local tau conformations and irreversible aggregation. However, prolonged residency within the droplet state eventually results in the emergence of detectable ß-sheet structures according to thioflavin-T assay. These findings suggest that the droplet state can incubate tau and predispose the protein toward the formation of insoluble fibrils.


Assuntos
Agregação Patológica de Proteínas , RNA/metabolismo , Proteínas tau/metabolismo , Células Cultivadas , Humanos , Temperatura
8.
J Biol Chem ; 293(11): 4014-4025, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29414793

RESUMO

Protein-protein interactions (PPIs) are an important category of putative drug targets. Improvements in high-throughput screening (HTS) have significantly accelerated the discovery of inhibitors for some categories of PPIs. However, methods suitable for screening multiprotein complexes (e.g. those composed of three or more different components) have been slower to emerge. Here, we explored an approach that uses reconstituted multiprotein complexes (RMPCs). As a model system, we chose heat shock protein 70 (Hsp70), which is an ATP-dependent molecular chaperone that interacts with co-chaperones, including DnaJA2 and BAG2. The PPIs between Hsp70 and its co-chaperones stimulate nucleotide cycling. Thus, to re-create this ternary protein system, we combined purified human Hsp70 with DnaJA2 and BAG2 and then screened 100,000 diverse compounds for those that inhibited co-chaperone-stimulated ATPase activity. This HTS campaign yielded two compounds with promising inhibitory activity. Interestingly, one inhibited the PPI between Hsp70 and DnaJA2, whereas the other seemed to inhibit the Hsp70-BAG2 complex. Using secondary assays, we found that both compounds inhibited the PPIs through binding to allosteric sites on Hsp70, but neither affected Hsp70's intrinsic ATPase activity. Our RMPC approach expands the toolbox of biochemical HTS methods available for studying difficult-to-target PPIs in multiprotein complexes. The results may also provide a starting point for new chemical probes of the Hsp70 system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Descoberta de Drogas , Proteínas de Choque Térmico HSP40/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/metabolismo , Ligação Proteica
9.
J Biol Chem ; 291(38): 19848-57, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27474739

RESUMO

Heat shock cognate protein 70 (Hsc70) regulates protein homeostasis through its reversible interactions with client proteins. Hsc70 has two major domains: a nucleotide-binding domain (NBD), that hydrolyzes ATP, and a substrate-binding domain (SBD), where clients are bound. Members of the BAG family of co-chaperones, including Bag1 and Bag3, are known to accelerate release of both ADP and client from Hsc70. The release of nucleotide is known to be mediated by interactions between the conserved BAG domain and the Hsc70 NBD. However, less is known about the regions required for client release, and it is often assumed that this activity also requires the BAG domain. It is important to better understand this step because it determines how long clients remain in the inactive, bound state. Here, we report the surprising observation that truncated versions of either human Bag1 or Bag3, comprised only the BAG domain, promoted rapid release of nucleotide, but not client, in vitro Rather, we found that a non-canonical interaction between Bag1/3 and the Hsc70 SBD is sufficient for accelerating this step. Moreover, client release did not seem to require the BAG domain or Hsc70 NBD. These results suggest that Bag1 and Bag3 control the stability of the Hsc70-client complex using at least two distinct protein-protein contacts, providing a previously under-appreciated layer of molecular regulation in the human Hsc70 system.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Reguladoras de Apoptose/química , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico HSC70/química , Complexos Multiproteicos/química , Fatores de Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
J Biol Chem ; 291(35): 18096-106, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27405763

RESUMO

hsc-70 (HSPA8) is a cytosolic molecular chaperone, which plays a central role in cellular proteostasis, including quality control during protein refolding and regulation of protein degradation. hsc-70 is pivotal to the process of macroautophagy, chaperone-mediated autophagy, and endosomal microautophagy. The latter requires hsc-70 interaction with negatively charged phosphatidylserine (PS) at the endosomal limiting membrane. Herein, by combining plasmon resonance, NMR spectroscopy, and amino acid mutagenesis, we mapped the C terminus of the hsc-70 LID domain as the structural interface interacting with endosomal PS, and we estimated an hsc-70/PS equilibrium dissociation constant of 4.7 ± 0.1 µm. This interaction is specific and involves a total of 4-5 lysine residues. Plasmon resonance and NMR results were further experimentally validated by hsc-70 endosomal binding experiments and endosomal microautophagy assays. The discovery of this previously unknown contact surface for hsc-70 in this work elucidates the mechanism of hsc-70 PS/membrane interaction for cytosolic cargo internalization into endosomes.


Assuntos
Autofagia/fisiologia , Endossomos/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Membranas Intracelulares/metabolismo , Fosfatidilserinas/metabolismo , Animais , Linhagem Celular , Endossomos/química , Endossomos/genética , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSC70/genética , Membranas Intracelulares/química , Camundongos , Fosfatidilserinas/química , Fosfatidilserinas/genética
11.
J Biol Chem ; 290(21): 13115-27, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25864199

RESUMO

The constitutively expressed heat shock protein 70 kDa (Hsc70) is a major chaperone protein responsible for maintaining proteostasis, yet how its structure translates into functional decisions regarding client fate is still unclear. We previously showed that Hsc70 preserved aberrant Tau, but it remained unknown if selective inhibition of the activity of this Hsp70 isoform could facilitate Tau clearance. Using single point mutations in the nucleotide binding domain, we assessed the effect of several mutations on the functions of human Hsc70. Biochemical characterization revealed that one mutation abolished both Hsc70 ATPase and refolding activities. This variant resembled the ADP-bound conformer at all times yet remained able to interact with cofactors, nucleotides, and substrates appropriately, resembling a dominant negative Hsc70 (DN-Hsc70). We then assessed the effects of this DN-Hsc70 on its client Tau. DN-Hsc70 potently facilitated Tau clearance via the proteasome in cells and brain tissue, in contrast to wild type Hsc70 that stabilized Tau. Thus, DN-Hsc70 mimics the action of small molecule pan Hsp70 inhibitors with regard to Tau metabolism. This shift in Hsc70 function by a single point mutation was the result of a change in the chaperome associated with Hsc70 such that DN-Hsc70 associated more with Hsp90 and DnaJ proteins, whereas wild type Hsc70 was more associated with other Hsp70 isoforms. Thus, isoform-selective targeting of Hsc70 could be a viable therapeutic strategy for tauopathies and possibly lead to new insights in chaperone complex biology.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Choque Térmico HSC70/antagonistas & inibidores , Proteínas de Choque Térmico HSC70/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína , Proteínas tau/metabolismo , Western Blotting , Células Cultivadas , Citosol/metabolismo , Polarização de Fluorescência , Imunofluorescência , Proteínas de Choque Térmico HSC70/genética , Humanos , Espectroscopia de Ressonância Magnética , Mutação/genética , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Proteínas tau/genética
12.
Anal Chem ; 88(16): 8272-8, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27434096

RESUMO

Capillary electrophoresis (CE) has been identified as a useful platform for detecting, quantifying, and screening for modulators of protein-protein interactions (PPIs). In this method, one protein binding partner is labeled with a fluorophore, the protein binding partners are mixed, and then, the complex is separated from free protein to allow direct determination of bound to free ratios. Although it possesses many advantages for PPI studies, the method is limited by the need to have separation conditions that both prevent protein adsorption to capillary and maintain protein interactions during the separation. In this work, we use protein cross-linking capillary electrophoresis (PXCE) to overcome this limitation. In PXCE, the proteins are cross-linked under binding conditions and then separated. This approach eliminates the need to maintain noncovalent interactions during electrophoresis and facilitates method development. We report PXCE methods for an antibody-antigen interaction and heterodimer and homodimer heat shock protein complexes. Complexes are cross-linked by short treatments with formaldehyde after reaching binding equilibrium. Cross-linked complexes are separated by electrophoretic mobility using free solution CE or by size using sieving electrophoresis of SDS complexes. The method gives good quantitative results; e.g., a lysozyme-antibody interaction was found to have Kd = 24 ± 3 nM by PXCE and Kd = 17 ± 2 nM using isothermal calorimetry (ITC). Heat shock protein 70 (Hsp70) in complex with bcl2 associated athanogene 3 (Bag3) was found to have Kd = 25 ± 5 nM by PXCE which agrees with Kd values reported without cross-linking. Hsp70-Bag3 binding site mutants and small molecule inhibitors of Hsp70-Bag3 were characterized by PXCE with good agreement to inhibitory constants and IC50 values obtained by a bead-based flow cytometry protein interaction assay (FCPIA). PXCE allows rapid method development for quantitative analysis of PPIs.


Assuntos
Reações Antígeno-Anticorpo/fisiologia , Proteínas Reguladoras de Apoptose/química , Reagentes de Ligações Cruzadas/química , Eletroforese Capilar , Proteínas de Choque Térmico/química , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Calorimetria , Dimerização , Corantes Fluorescentes/química , Formaldeído/química , Proteínas de Choque Térmico/metabolismo , Muramidase/química , Muramidase/metabolismo , Ligação Proteica
13.
J Biol Chem ; 289(3): 1402-14, 2014 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-24318877

RESUMO

Proteins with Bcl2-associated anthanogene (BAG) domains act as nucleotide exchange factors (NEFs) for the molecular chaperone heat shock protein 70 (Hsp70). There are six BAG family NEFs in humans, and each is thought to link Hsp70 to a distinct cellular pathway. However, little is known about how the NEFs compete for binding to Hsp70 or how they might differentially shape its biochemical activities. Toward these questions, we measured the binding of human Hsp72 (HSPA1A) to BAG1, BAG2, BAG3, and the unrelated NEF Hsp105. These studies revealed a clear hierarchy of affinities: BAG3 > BAG1 > Hsp105 ≫ BAG2. All of the NEFs competed for binding to Hsp70, and their relative affinity values predicted their potency in nucleotide and peptide release assays. Finally, we combined the Hsp70-NEF pairs with cochaperones of the J protein family (DnaJA1, DnaJA2, DnaJB1, and DnaJB4) to generate 16 permutations. The activity of the combinations in ATPase and luciferase refolding assays were dependent on the identity and stoichiometry of both the J protein and NEF so that some combinations were potent chaperones, whereas others were inactive. Given the number and diversity of cochaperones in mammals, it is likely that combinatorial assembly could generate a large number of distinct permutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ligação a DNA/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP70/química , Chaperonas Moleculares/química , Complexos Multiproteicos/química , Fatores de Transcrição/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Ligação Proteica/fisiologia , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Anal Chem ; 85(20): 9824-31, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24060167

RESUMO

Methods for identifying chemical inhibitors of protein-protein interactions (PPIs) are often prone to discovery of false positives, particularly those caused by molecules that induce protein aggregation. Thus, there is interest in developing new platforms that might allow earlier identification of these problematic compounds. Capillary electrophoresis (CE) has been evaluated as a method to screen for PPI inhibitors using the challenging system of Hsp70 interacting with its co-chaperone Bag3. In the method, Hsp70 is labeled with a fluorophore, mixed with Bag3, and the resulting bound and free Hsp70 are separated and detected by CE with laser-induced fluorescence detection. The method used a chemically modified CE capillary to prevent protein adsorption. Inhibitors of the Hsp70-Bag3 interaction were detected by observing a reduction in the bound-to-free ratio. The method was used to screen a library of 3443 compounds, and the results were compared to those from a flow cytometry protein interaction assay. CE was found to produce a lower hit rate with more compounds that were reconfirmed in subsequent testing, suggesting greater specificity. This finding was attributed to the use of electropherograms to detect artifacts such as aggregators and to differences in protein modifications required to perform the different assays. Increases in throughput are required to make the CE method suitable for primary screens, but at the current stage of development it is attractive as a secondary screen to test hits found by higher-throughput methods.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Eletroforese Capilar/métodos , Proteínas de Choque Térmico HSP70/metabolismo , Artefatos , Corantes Fluorescentes/química , Proteínas de Choque Térmico HSP70/química , Humanos , Ligação Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
15.
Methods Mol Biol ; 2551: 269-284, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36310209

RESUMO

Protein liquid-liquid phase separation (LLPS) has been associated with biological functions and pathological aggregation. Mapping the phase separation conditions is the first step to identify and quantify the driving forces of LLPS. Here, we describe the protocols to draw the phase diagram of tau-RNA LLPS and use the mapped diagram to guide experimental conditions for LLPS-cell coculturing, electron resonance spectroscopy in particular double electron-electron resonance spectroscopy, crosslinking immunoprecipitation, and isothermal titration calorimetry.


Assuntos
RNA , RNA/metabolismo
16.
Nat Commun ; 13(1): 3074, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35654899

RESUMO

The formation of membraneless organelles can be a proteotoxic stress control mechanism that locally condenses a set of components capable of mediating protein degradation decisions. The breadth of mechanisms by which cells respond to stressors and form specific functional types of membraneless organelles, is incompletely understood. We found that Bcl2-associated athanogene 2 (BAG2) marks a distinct phase-separated membraneless organelle, triggered by several forms of stress, particularly hyper-osmotic stress. Distinct from well-known condensates such as stress granules and processing bodies, BAG2-containing granules lack RNA, lack ubiquitin and promote client degradation in a ubiquitin-independent manner via the 20S proteasome. These organelles protect the viability of cells from stress and can traffic to the client protein, in the case of Tau protein, on the microtubule. Components of these ubiquitin-independent degradation organelles include the chaperone HSP-70 and the 20S proteasome activated by members of the PA28 (PMSE) family. BAG2 condensates did not co-localize with LAMP-1 or p62/SQSTM1. When the proteasome is inhibited, BAG2 condensates and the autophagy markers traffic to an aggresome-like structure.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Autofagia , Humanos , Chaperonas Moleculares/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina/metabolismo
17.
Curr Protoc ; 2(2): e385, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35195954

RESUMO

The COVID-19 pandemic has taken a devastating human toll worldwide. The development of impactful guidelines and measures for controlling the COVID-19 pandemic requires continuous and widespread testing of suspected cases and their contacts through accurate, accessible, and reliable methods for SARS-CoV-2 detection. Here we describe a CRISPR-Cas13-based method for the detection of SARS-CoV-2. The assay is called CREST (Cas13-based, rugged, equitable, scalable testing), and is specific, sensitive, and highly accessible. As such, CREST may provide a low-cost and dependable alternative for SARS-CoV-2 surveillance. © 2022 Wiley Periodicals LLC. Basic Protocol: Cas13-ased detection of SARS-CoV-2 genetic material using a real-time PCR detection system Alternate Protocol: Cas13-based detection of SARS-CoV-2 genetic material using a fluorescence viewer Support Protocol 1: LwaCas13a purification Support Protocol 2: In vitro transcription of synthetic targets.


Assuntos
COVID-19 , SARS-CoV-2 , Sistemas CRISPR-Cas , Humanos , Técnicas de Amplificação de Ácido Nucleico , Pandemias
18.
Stem Cell Reports ; 17(9): 2127-2140, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-35985329

RESUMO

Mutations in the MAPT gene that encodes tau lead to frontotemporal dementia (FTD) with pathology evident in both cerebral neurons and glia. Human cerebral organoids (hCOs) from individuals harboring pathogenic tau mutations can reveal the earliest downstream effects on molecular pathways within a developmental context, generating interacting neurons and glia. We found that in hCOs carrying the V337M and R406W tau mutations, the cholesterol biosynthesis pathway in astrocytes was the top upregulated gene set compared with isogenic controls by single-cell RNA sequencing (scRNA-seq). The 15 upregulated genes included HMGCR, ACAT2, STARD4, LDLR, and SREBF2. This result was confirmed in a homozygous R406W mutant cell line by immunostaining and sterol measurements. Cholesterol abundance in the brain is tightly regulated by efflux and cholesterol biosynthetic enzyme levels in astrocytes, and dysregulation can cause aberrant phosphorylation of tau. Our findings suggest that cholesterol dyshomeostasis is an early event in the etiology of neurodegeneration caused by tau mutations.


Assuntos
Demência Frontotemporal , Proteínas tau , Colesterol , Demência Frontotemporal/genética , Humanos , Mutação/genética , Organoides/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
19.
JAMA Netw Open ; 4(2): e2037129, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33570576

RESUMO

Importance: The reopening of colleges and universities in the US during the coronavirus disease 2019 (COVID-19) pandemic is a significant public health challenge. The development of accessible and practical approaches for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection in the college population is paramount for deploying recurrent surveillance testing as an essential strategy for virus detection, containment, and mitigation. Objective: To determine the prevalence of SARS-CoV-2 in asymptomatic participants in a university community by using CREST (Cas13-based, rugged, equitable, scalable testing), a CRISPR-based test developed for accessible and large-scale viral screening. Design, Setting, and Participants: For this cohort study, a total of 1808 asymptomatic participants were screened for SARS-CoV-2 using a CRISPR-based assay and a point-of-reference reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) test. Viral prevalence in self-collected oropharyngeal swab samples collected from May 28 to June 11, 2020, and from June 23 to July 2, 2020, was evaluated. Exposures: Testing for SARS-CoV-2. Main Outcomes and Measures: SARS-CoV-2 status, viral load, and demographic information of the study participants were collected. Results: Among the 1808 participants (mean [SD] age, 27.3 [11.0] years; 955 [52.8%] female), 732 underwent testing from May to early June (mean [SD] age, 28.4 [11.7] years; 392 [53.6%] female). All test results in this cohort were negative. In contrast, 1076 participants underwent testing from late June to early July (mean [SD] age, 26.6 [10.5] years; 563 [52.3%] female), with 9 positive results by RT-qPCR. Eight of these positive samples were detected by the CRISPR-based assay and confirmed by Clinical Laboratory Improvement Amendments-certified diagnostic testing. The mean (SD) age of the positive cases was 21.7 (3.3) years; all 8 individuals self-identified as students. These metrics showed that a CRISPR-based assay was effective at capturing positive SARS-CoV-2 cases in this student population. Notably, the viral loads detected in these asymptomatic cases resemble those seen in clinical samples, highlighting the potential of covert viral transmission. The shift in viral prevalence coincided with the relaxation of stay-at-home measures. Conclusions and Relevance: These findings reveal a shift in SARS-CoV-2 prevalence in a young and asymptomatic population and uncover the leading edge of a local outbreak that coincided with rising case counts in the surrounding county and the state of California. The concordance between CRISPR-based and RT-qPCR testing suggests that CRISPR-based assays are reliable and offer alternative options for surveillance testing and detection of SARS-CoV-2 outbreaks, as is required to resume operations in higher-education institutions in the US and abroad.


Assuntos
COVID-19/diagnóstico , Técnicas de Laboratório Clínico/métodos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Programas de Rastreamento/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , SARS-CoV-2/genética , Universidades , Adolescente , Adulto , COVID-19/virologia , Estudos de Coortes , Surtos de Doenças , Feminino , Humanos , Masculino , Pandemias , DNA Polimerase Dirigida por RNA , Estudantes , Carga Viral , Adulto Jovem
20.
J Cell Biol ; 219(11)2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32997736

RESUMO

Tau protein in vitro can undergo liquid-liquid phase separation (LLPS); however, observations of this phase transition in living cells are limited. To investigate protein state transitions in living cells, we attached Cry2 to Tau and studied the contribution of each domain that drives the Tau cluster in living cells. Surprisingly, the proline-rich domain (PRD), not the microtubule binding domain (MTBD), drives LLPS and does so under the control of its phosphorylation state. Readily observable, PRD-derived cytoplasmic condensates underwent fusion and fluorescence recovery after photobleaching consistent with the PRD LLPS in vitro. Simulations demonstrated that the charge properties of the PRD predicted phase separation. Tau PRD formed heterotypic condensates with EB1, a regulator of plus-end microtubule dynamic instability. The specific domain properties of the MTBD and PRD serve distinct but mutually complementary roles that use LLPS in a cellular context to implement emergent functionalities that scale their relationship from binding α-beta tubulin heterodimers to the larger proportions of microtubules.


Assuntos
Extração Líquido-Líquido/métodos , Neuroblastoma/patologia , Prolina/química , Prolina/metabolismo , Agregação Patológica de Proteínas , Proteínas tau/química , Proteínas tau/metabolismo , Separação Celular/métodos , Humanos , Microtúbulos , Neuroblastoma/metabolismo , Fosforilação , Ligação Proteica , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA