Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Med Inform Decis Mak ; 20(1): 60, 2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228556

RESUMO

BACKGROUND: The rapid adoption of electronic health records (EHRs) holds great promise for advancing medicine through practice-based knowledge discovery. However, the validity of EHR-based clinical research is questionable due to poor research reproducibility caused by the heterogeneity and complexity of healthcare institutions and EHR systems, the cross-disciplinary nature of the research team, and the lack of standard processes and best practices for conducting EHR-based clinical research. METHOD: We developed a data abstraction framework to standardize the process for multi-site EHR-based clinical studies aiming to enhance research reproducibility. The framework was implemented for a multi-site EHR-based research project, the ESPRESSO project, with the goal to identify individuals with silent brain infarctions (SBI) at Tufts Medical Center (TMC) and Mayo Clinic. The heterogeneity of healthcare institutions, EHR systems, documentation, and process variation in case identification was assessed quantitatively and qualitatively. RESULT: We discovered a significant variation in the patient populations, neuroimaging reporting, EHR systems, and abstraction processes across the two sites. The prevalence of SBI for patients over age 50 for TMC and Mayo is 7.4 and 12.5% respectively. There is a variation regarding neuroimaging reporting where TMC are lengthy, standardized and descriptive while Mayo's reports are short and definitive with more textual variations. Furthermore, differences in the EHR system, technology infrastructure, and data collection process were identified. CONCLUSION: The implementation of the framework identified the institutional and process variations and the heterogeneity of EHRs across the sites participating in the case study. The experiment demonstrates the necessity to have a standardized process for data abstraction when conducting EHR-based clinical studies.


Assuntos
Infarto Encefálico , Atenção à Saúde , Idoso , Idoso de 80 Anos ou mais , Registros Eletrônicos de Saúde , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Pesquisa
2.
JMIR Med Inform ; 7(2): e12109, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31066686

RESUMO

BACKGROUND: Silent brain infarction (SBI) is defined as the presence of 1 or more brain lesions, presumed to be because of vascular occlusion, found by neuroimaging (magnetic resonance imaging or computed tomography) in patients without clinical manifestations of stroke. It is more common than stroke and can be detected in 20% of healthy elderly people. Early detection of SBI may mitigate the risk of stroke by offering preventative treatment plans. Natural language processing (NLP) techniques offer an opportunity to systematically identify SBI cases from electronic health records (EHRs) by extracting, normalizing, and classifying SBI-related incidental findings interpreted by radiologists from neuroimaging reports. OBJECTIVE: This study aimed to develop NLP systems to determine individuals with incidentally discovered SBIs from neuroimaging reports at 2 sites: Mayo Clinic and Tufts Medical Center. METHODS: Both rule-based and machine learning approaches were adopted in developing the NLP system. The rule-based system was implemented using the open source NLP pipeline MedTagger, developed by Mayo Clinic. Features for rule-based systems, including significant words and patterns related to SBI, were generated using pointwise mutual information. The machine learning models adopted convolutional neural network (CNN), random forest, support vector machine, and logistic regression. The performance of the NLP algorithm was compared with a manually created gold standard. The gold standard dataset includes 1000 radiology reports randomly retrieved from the 2 study sites (Mayo and Tufts) corresponding to patients with no prior or current diagnosis of stroke or dementia. 400 out of the 1000 reports were randomly sampled and double read to determine interannotator agreements. The gold standard dataset was equally split to 3 subsets for training, developing, and testing. RESULTS: Among the 400 reports selected to determine interannotator agreement, 5 reports were removed due to invalid scan types. The interannotator agreements across Mayo and Tufts neuroimaging reports were 0.87 and 0.91, respectively. The rule-based system yielded the best performance of predicting SBI with an accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of 0.991, 0.925, 1.000, 1.000, and 0.990, respectively. The CNN achieved the best score on predicting white matter disease (WMD) with an accuracy, sensitivity, specificity, PPV, and NPV of 0.994, 0.994, 0.994, 0.994, and 0.994, respectively. CONCLUSIONS: We adopted a standardized data abstraction and modeling process to developed NLP techniques (rule-based and machine learning) to detect incidental SBIs and WMDs from annotated neuroimaging reports. Validation statistics suggested a high feasibility of detecting SBIs and WMDs from EHRs using NLP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA