Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Fluoresc ; 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37523139

RESUMO

Organic fluorescence sensor for selectively detecting and quantifying toxic heavy metal ions has received significant interest due to their environmental hazards. Herein, we have designed and synthesized a simple tripodal Schiff base ligand (1) based on hydroxy-naphthaldehyde and tris(2-aminoethyl)amine (TREN) and demonstrated highly selective turn-on fluorescence sensing of Cd2+ ions. The free ligand did not show any fluorescence in DMF. In contrast, Cd2+ (10- 4 M) addition exhibited a strong enhancement of fluorescence at 450 nm. Interestingly, other metal ions including Zn2+, which exhibit similar chemistry, did not show any turn-on fluorescence. The concentration-dependent studies of 1 with Cd2+ showed the detection limit of 6.78 × 10- 8 M. NMR spectra of 1 with Cd2+ and computational studies were performed to understand the mechanism of sense.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124303, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38636429

RESUMO

A new deep blue emissive organic fluorophore (N-cyclohexyl-N-(cyclohexylcarbamoyl)-4-(diphenylamino)benzamide (NCDPB)) was designed and synthesized, which showed strong fluorescence both in solution and solid-state. Solid-state structural analysis of NCDPB revealed non-planar twisted molecular conformation with extended hydrogen bonding between the amide functionalities. The propeller shaped triphenylamine (TPA) and non-planar cyclohexyl unit prevented close π…π stacking and produced strong deep blue emission in the solid state (λmax = 400 nm, quantum yield (Φf) = 12.6 %). NCDPB also exhibited strong solvent polarity dependent tunable emission in solution (λmax = 402-462 nm, Φf = 1.15 (compared to quinine sulphate)). NCDPB showed reversible fluorescence switching between two fluorescence states upon mechanical crushing and heating/solvent exposure. Mechanical crushing caused red shifting of fluorescence from 400 to 447 nm and heating/solvent exposure reversed the fluorescence. Further, NCDPB also displayed off-on reversible/self-reversible fluorescence switching upon exposure to trifluoracetic acid (TFA) and NH3. The repeated fluorescence switching cycles indicated high reversibility without any significant change of fluorescence intensity. The drastically different fluorescence of NCDPB in CH3OH and EtOH was utilized to distinguish them and monitor CH3OH contamination in ethanol and benzene. It showed limit of detection (LOD) of methanol up to 0.25 % and 7 % in benzene and ethanol, respectively. The water sensitive fluorescence modulation of NCDPB in organic solvents was used to sensing water contamination in common organic solvents. Thus, integration of twisted TPA with H-bonding urea produced dual state emitting organic fluorophore with multi-responsive fluorescence switching and solvent sensing.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124557, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38830332

RESUMO

The photophysical properties of conformationally flexible (TPA-C) and partially rigidified (Cz-C) triarylamine acids were explored in solid as well as solution state and correlated with the structure. TPA-C and Cz-C exhibited moderate solid-state fluorescence (Φf = 6.2 % (TPA-C) and 5.6 % (Cz-C)) and self-reversible mechanofluorochromism. TPA-C produced fluorescent polymorphs (TPA-C-1 and TPA-C-2) with tunable fluorescence. TPA-C-1 showed unusual carboxylic acid intermolecular interactions whereas TPA-C-2 and Cz-C showed usual carboxylic acid dimer. TPA-C exhibited strong solvent polarity dependent tunable fluorescence (Φf = 0.01 to 0.11 compared to quinine sulphate standard) but Cz-C was non-emissive in the solution state. The dual emissive TPA-C showed highly sensitive fluorescence changes in organic solvents (CH3CN, THF, DMF, EtOH) when trace amount of water was added. In CH3CN, TPA-C showed weak fluorescence at 474 nm and addition of water (1 %) exhibited significant blue shift (λmax = 416 nm). The fluorescence intensity was gradually decreased with blue shifting in DMF, THF and EtOH with water addition. Importantly, TPA-C showed drastically different fluorescence in n-propanol (n-PA) and iso-propanol (IPA). TPA-C in n-PA showed fluorescence at 408 nm that was clearly red shifted to 438 nm with 0.1 % addition of IPA. The limit of detection (LOD) of water in CH3CN, DMF, THF and EtOH by TPA-C revealed 0.02, 0.7, 0.08 and 0.77 %, respectively. The LOD of IPA sensing in n-PA is 0.05 % and indicated the very efficient sensing and distinguishing propanol isomers. Thus, simple triphenylamine acid showed excellent water sensing and propanol isomers discrimination that could be attributed to the twisted intramolecular charge transfer (TICT) formation.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 326: 125210, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39342720

RESUMO

Carbazole-picoline based π-conjugated zwitterionic fluorophores, (E)-3-(4-(4-(9H-carbazol-9-yl)styryl)pyridin-1-ium-1-yl)propane-1-sulfonate (Cz-PS) and (E)-4-(4-(4-(9H-carbazol-9-yl)styryl)pyridin-1-ium-1-yl)butane-1-sulfonate (Cz-BS) were synthesized and investigated the stimuli-responsive solid-state fluorescence properties. Cz-PS and Cz-BS displayed enhanced fluorescence in the solid-state (555 and 542 nm) with the quantum yield (Φf) of 32.9 and 28.5 %, respectively. Thermogravimetric analysis (TGA) indicated good thermal stability up to 300 °C for both Cz-PS and Cz-BS. Single crystal structural analysis of Cz-BS confirmed twisted molecular conformation and supramolecular interactions induced network structure, which lead to increase of solid-state fluorescence. Cz-BS showed mechanical stimuli-induced reversible/self-reversible fluorescence switching between two fluorescence states whereas Cz-PS did not show mechanofluorochromism. But both Cz-PS and Cz-BS showed acid/base dependent on-off reversible fluorescence switching in solution as well as solid-state. Further, both compounds also displayed reversible thermofluorochromism by heating and cooling. The yellow fluorescence of Cz-PS and Cz-BS was transformed to orange upon heating at 110 °C and cooling reversed the fluorescence to initial state. The good thermal stability and enhanced solid-state fluorescence of Cz-PS and Cz-BS were utilized for latent fingerprinting (LFP) application on various solid substrate. Particularly, LFP images of Cz-BS showed finger marks with well-defined features. Thus, integrating zwitterionic functionality produced strong solid-state fluorescence with multi-functional applications.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123838, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181625

RESUMO

Highly sensitive nature of excited state intramolecular proton transfer (ESIPT) functionality in organic fluorophores made them potential candidates for developing environmental sensors and bioimaging applications. Herein, we report the synthesis of V-shaped Dapsone based Schiff base ESIPT derivatives (1-3) and water sensitive wide fluorescence tuning from blue to red in DMSO. Solid-state structural analysis confirmed the V-shaped molecular structure with intramolecular H-bonding and substituent dependent molecular packing in the crystal lattice. 1 showed strong solid-state fluorescence (λmax = 554 nm, Φf = 21.2 %) whereas methoxy substitution (2 and 3) produced tunable but significantly reduced fluorescence (λmax = 547 (2) and 615 nm (3), Φf = 2.1 (2) and 6.5 % (3)). Interestingly, aggregation induced emission (AIE) studies in DMSO-water mixture revealed water sensitive fluorescence tuning. The trace amount of water (less than 1 %) in DMSO converted the non-emissive 1-3 into highly emissive state due to keto tautomer formation. Further increasing water percentage produced deprotonated state of 1-3 in DMSO and enhanced the fluorescence intensity with red shifting of emission peak. At higher water fraction, 1-3 in DMSO produced aggregates and red shifted the emission with reduction of fluorescence intensity. The concentration dependent fluorescence study revealed the very low detection limit of water in DMSO. The limit of detection (LOD) of 1, 2 and 3 were 0.14, 1.04 and 0.65 % of water in DMSO. Hence, simple Schiff bases of 1-3 showed water concentration dependent keto isomer, deprotonated and aggregated state tunable fluorescence in DMSO. Further, scanning electron microscopic (SEM) studies of 1-3 showed water concentration controlled self-assembly and tunable fluorescence.

6.
RSC Adv ; 13(18): 12476-12482, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091617

RESUMO

Carbazole-based, π-conjugated donor-acceptor fluorophores were synthesized by integrating imidazole/thiazole units. Then, we investigated the impact of subtle structural changes on fluorescence properties. Carbazole integrated with imidazole (Cz-I) and carbazole integrated with thiazole (Cz-T) showed strong fluorescence in solution (quantum yield (Φ f) = 0.18 (Cz-I) and 0.14 (Cz-T) compared with the standard quinine sulfate) and solid-state (Φ f = 8.0% (Cz-I) and 14.6% (Cz-T)). Cz-I showed relatively more blue-shifted emission in solution compared with the solid-state (λ max = 417 nm (CH3CN) and 460 nm (solid)). Cz-T exhibited deep-blue emission in the solid-state compared with solution (λ max = 455 nm (CH3CN) and 418 nm (solid)). Interestingly, Cz-T exhibited a drastic change in fluorescence in organic solvents (CH3CN, THF, CH3OH, DMSO) with a low percentage (1%) of water. Cz-I showed reversible fluorescence switching between two fluorescence states upon exposure to trifluoracetic acid (TFA)/ammonia (NH3). In contrast, Cz-T displayed reversible/self-reversible off-on fluorescence switching upon exposure to TFA or NH3. Mechanofluorochromic studies of Cz-I showed a slight reduction in fluorescence intensity upon crushing and reversal to the initial state upon heating. Cz-T exhibited off-on reversible/self-reversible fluorescence switching upon crushing/heating. Computational studies indicated that thiazole integration improved the electron-withdrawing characteristics compared with imidazole and contributed to contrasting fluorescence responses. Thus, a simple change of nitrogen with sulfur produced contrasting self-assembly in the solid-state that led to different functional properties and stimuli-induced fluorescence switching.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA