Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 15(5)2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-37243189

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), believed to have originated from a bat species, can infect a wide range of non-human hosts. Bats are known to harbor hundreds of coronaviruses capable of spillover into human populations. Recent studies have shown a significant variation in the susceptibility among bat species to SARS-CoV-2 infection. We show that little brown bats (LBB) express angiotensin-converting enzyme 2 receptor and the transmembrane serine protease 2, which are accessible to and support SARS-CoV-2 binding. All-atom molecular dynamics (MD) simulations revealed that LBB ACE2 formed strong electrostatic interactions with the RBD similar to human and cat ACE2 proteins. In summary, LBBs, a widely distributed North American bat species, could be at risk of SARS-CoV-2 infection and potentially serve as a natural reservoir. Finally, our framework, combining in vitro and in silico methods, is a useful tool to assess the SARS-CoV-2 susceptibility of bats and other animal species.


Assuntos
COVID-19 , Quirópteros , Animais , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
2.
Viruses ; 14(5)2022 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-35632689

RESUMO

From 29 November to 1 December 2021, an "emerging animal infectious disease conference (EAIDC)" was held at the Pennsylvania State University. This conference brought together distinguished thought leaders in animal health, veterinary diagnostics, epidemiology and disease surveillance, and agricultural economics. The conference's primary objective was to review the lessons learned from past experiences in dealing with high-consequence animal infectious diseases to inform an action plan to prepare for future epizootics and panzootics. Invited speakers and panel members comprised world-leading experts in animal infectious diseases from federal state agencies, academia, professional societies, and the private sector. The conference concluded that the biosecurity of livestock operations is critical for minimizing the devastating impact of emerging animal infectious diseases. The panel also highlighted the need to develop and benchmark cutting-edge diagnostics for rapidly detecting pathogens in clinical samples and the environment. Developing next-generation pathogen agnostic diagnostics will help detect variants of known pathogens and unknown novel pathogens. The conference also highlighted the importance of the One Health approach in dealing with emerging animal and human infectious diseases. The recommendations of the conference may be used to inform policy discussions focused on developing strategies for monitoring and preventing emerging infectious disease threats to the livestock industry.


Assuntos
Doenças Transmissíveis Emergentes , Doenças Transmissíveis , Agricultura , Animais , Doenças Transmissíveis/diagnóstico , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/veterinária , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Humanos
3.
Viruses ; 14(7)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35891340

RESUMO

Multiple domestic and wild animal species are susceptible to SARS-CoV-2 infection. Cattle and swine are susceptible to experimental SARS-CoV-2 infection. The unchecked transmission of SARS-CoV-2 in animal hosts could lead to virus adaptation and the emergence of novel variants. In addition, the spillover and subsequent adaptation of SARS-CoV-2 in livestock could significantly impact food security as well as animal and public health. Therefore, it is essential to monitor livestock species for SARS-CoV-2 spillover. We developed and optimized species-specific indirect ELISAs (iELISAs) to detect anti-SARS-CoV-2 antibodies in cattle, swine, and chickens using the spike protein receptor-binding domain (RBD) antigen. Serum samples collected prior to the COVID-19 pandemic were used to determine the cut-off threshold. RBD hyperimmunized sera from cattle (n = 3), swine (n = 6), and chicken (n = 3) were used as the positive controls. The iELISAs were evaluated compared to a live virus neutralization test using cattle (n = 150), swine (n = 150), and chicken (n = 150) serum samples collected during the COVID-19 pandemic. The iELISAs for cattle, swine, and chicken were found to have 100% sensitivity and specificity. These tools facilitate the surveillance that is necessary to quickly identify spillovers into the three most important agricultural species worldwide.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/veterinária , Bovinos , Galinhas , Ensaio de Imunoadsorção Enzimática , Humanos , Pandemias/prevenção & controle , Glicoproteína da Espícula de Coronavírus , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA