RESUMO
The purpose of this review is to discuss the challenges associated with the development of nanoparticle-based quality drug products in adhering to the principles of quality by design (QbD) and defining appropriate quality parameters towards successful product development. With the advent of nanotechnology into the pharmaceutical field, the novel field of nanomedicine was born. Due to their unique properties in terms of size, conformation and targeted delivery, nanomedicines are able to overcome many drawbacks of conventional medicine. As nano-sized formulations have made their way into more and more therapies, it has became clear that these very unique properties create hurdles for nanomedicines in successfully traversing the regulatory pathways and there is a need to develop nanomedicines in a more controlled and consistent fashion. The elements of a QbD methodology explained in this review enable the development of nano-based formulations in a way that maximizes the possibility of success. The identification of critical quality attributes (CQA) of the drug product and its intermediates are discussed in detail with a focus on nanomaterial-based formulations. In conclusion, QbD and the identification and specification of CQAs at its core are critical to the design, development and growth of nanomaterials in pharmaceuticals.
Assuntos
Desenvolvimento de Medicamentos/métodos , Nanocápsulas/química , Nanotecnologia/métodos , Animais , Preparações de Ação Retardada/química , Composição de Medicamentos , Estabilidade de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Nanomedicina , Resultado do TratamentoRESUMO
Silicon photonic microring resonators have established their potential for label-free and low-cost biosensing applications. However, the long-term performance of this optical sensing platform requires robust surface modification and biofunctionalization. Herein, we demonstrate a conjugation strategy based on an organophosphonate surface coating and vinyl sulfone linker to biofunctionalize silicon resonators for biomolecular sensing. To validate this method, a series of glycans, including carbohydrates and glycoconjugates, were immobilized on divinyl sulfone (DVS)/organophosphonate-modified microrings and used to characterize carbohydrate-protein and norovirus particle interactions. This biofunctional platform was able to orthogonally detect multiple specific carbohydrate-protein interactions simultaneously. Additionally, the platform was capable of reproducible binding after multiple regenerations by high-salt, high-pH, or low-pH solutions and after 1 month storage in ambient conditions. This remarkable stability and durability of the organophosphonate immobilization strategy will facilitate the application of silicon microring resonators in various sensing conditions, prolong their lifetime, and minimize the cost for storage and delivery; these characteristics are requisite for developing biosensors for point-of-care and distributed diagnostics and other biomedical applications. In addition, the platform demonstrated its ability to characterize carbohydrate-mediated host-virus interactions, providing a facile method for discovering new antiviral agents to prevent infectious disease.