Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 531(7594): 381-5, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26934220

RESUMO

The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.


Assuntos
Alanina/análogos & derivados , Antivirais/uso terapêutico , Doença pelo Vírus Ebola/tratamento farmacológico , Macaca mulatta/virologia , Ribonucleotídeos/uso terapêutico , Monofosfato de Adenosina/análogos & derivados , Alanina/farmacocinética , Alanina/farmacologia , Alanina/uso terapêutico , Sequência de Aminoácidos , Animais , Antivirais/farmacocinética , Antivirais/farmacologia , Linhagem Celular Tumoral , Ebolavirus/efeitos dos fármacos , Feminino , Células HeLa , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Masculino , Dados de Sequência Molecular , Especificidade de Órgãos , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Ribonucleotídeos/farmacocinética , Ribonucleotídeos/farmacologia
2.
Gastroenterology ; 155(5): 1463-1473.e6, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30059671

RESUMO

BACKGROUND & AIMS: De novo lipogenesis is increased in livers of patients with nonalcoholic steatohepatitis (NASH). Acetyl-coenzyme carboxylase catalyzes the rate-limiting step in this process. We evaluated the safety and efficacy of GS-0976, an inhibitor of acetyl-coenzyme A carboxylase in liver, in a phase 2 randomized placebo-controlled trial of patients with NASH. METHODS: We analyzed data from 126 patients with hepatic steatosis of at least 8%, based on the magnetic resonance imaging-estimated proton density fat fraction (MRI-PDFF), and liver stiffness of at least 2.5 kPa, based on magnetic resonance elastography measurement or historical biopsy result consistent with NASH and F1-F3 fibrosis. Patients were randomly assigned (2:2:1) to groups given GS-0976 20 mg, GS-0976 5 mg, or placebo daily for 12 weeks, from August 8, 2016 through July 18, 2017. Measures of hepatic steatosis, stiffness, serum markers of fibrosis, and plasma metabolomics were evaluated. The primary aims were to confirm previous findings and evaluate the relation between dose and efficacy. RESULTS: A relative decrease of at least 30% from baseline in MRI-PDFF (PDFF response) occurred in 48% of patients given GS-0976 20 mg (P = .004 vs placebo), 23% given GS-0976 5 mg (P = .43 vs placebo), and 15% given placebo. Median relative decreases in MRI-PDFF were greater in patients given GS-0976 20 mg (decrease of 29%) than those given placebo (decrease of 8%; P = .002). Changes in magnetic resonance elastography-measured stiffness did not differ among groups, but a dose-dependent decrease in the fibrosis marker tissue inhibitor of metalloproteinase 1 was observed in patients given GS-0976 20 mg. Plasma levels of acylcarnitine species also decreased in patients with a PDFF response given GS-0976 20 mg. GS-0976 was safe, but median relative increases of 11% and 13% in serum levels of triglycerides were observed in patients given GS-0976. CONCLUSIONS: In a randomized placebo-controlled trial of patients with NASH, we found 12-week administration of GS-0976 20 mg decreased hepatic steatosis, selected markers of fibrosis, and liver biochemistry. ClinicalTrials.gov ID NCT02856555.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Fígado Gorduroso/tratamento farmacológico , Isobutiratos/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxazóis/uso terapêutico , Pirimidinas/uso terapêutico , Biomarcadores , Carnitina/análogos & derivados , Carnitina/sangue , Método Duplo-Cego , Técnicas de Imagem por Elasticidade , Feminino , Humanos , Isobutiratos/farmacologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/diagnóstico por imagem , Oxazóis/farmacologia , Pirimidinas/farmacologia
3.
Hepatology ; 68(6): 2197-2211, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29790582

RESUMO

Pharmacologic inhibition of acetyl-CoA carboxylase (ACC) enzymes, ACC1 and ACC2, offers an attractive therapeutic strategy for nonalcoholic fatty liver disease (NAFLD) through simultaneous inhibition of fatty acid synthesis and stimulation of fatty acid oxidation. However, the effects of ACC inhibition on hepatic mitochondrial oxidation, anaplerosis, and ketogenesis in vivo are unknown. Here, we evaluated the effect of a liver-directed allosteric inhibitor of ACC1 and ACC2 (Compound 1) on these parameters, as well as glucose and lipid metabolism, in control and diet-induced rodent models of NAFLD. Oral administration of Compound 1 preferentially inhibited ACC enzymatic activity in the liver, reduced hepatic malonyl-CoA levels, and enhanced hepatic ketogenesis by 50%. Furthermore, administration for 6 days to high-fructose-fed rats resulted in a 20% reduction in hepatic de novo lipogenesis. Importantly, long-term treatment (21 days) significantly reduced high-fat sucrose diet-induced hepatic steatosis, protein kinase C epsilon activation, and hepatic insulin resistance. ACCi treatment was associated with a significant increase in plasma triglycerides (approximately 30% to 130%, depending on the length of fasting). ACCi-mediated hypertriglyceridemia could be attributed to approximately a 15% increase in hepatic very low-density lipoprotein production and approximately a 20% reduction in triglyceride clearance by lipoprotein lipase (P ≤ 0.05). At the molecular level, these changes were associated with increases in liver X receptor/sterol response element-binding protein-1 and decreases in peroxisome proliferator-activated receptor-α target activation and could be reversed with fenofibrate co-treatment in a high-fat diet mouse model. Conclusion: Collectively, these studies warrant further investigation into the therapeutic utility of liver-directed ACC inhibition for the treatment of NAFLD and hepatic insulin resistance.


Assuntos
Acetil-CoA Carboxilase/metabolismo , Resistência à Insulina , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Triglicerídeos/sangue , Acetil-CoA Carboxilase/antagonistas & inibidores , Animais , Ácidos Graxos não Esterificados/sangue , Cetonas/metabolismo , Lipogênese , Lipoproteínas VLDL/sangue , Masculino , Análise do Fluxo Metabólico , PPAR alfa/agonistas , Ratos Sprague-Dawley , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-29439971

RESUMO

Sofosbuvir and ribavirin exert their anti-hepatitis C virus (anti-HCV) activity following metabolic activation in the liver. However, intrahepatic concentrations of the pharmacologically active nucleotide metabolites in humans are poorly characterized due to the inaccessibility of tissue and technical challenges with measuring nucleotide levels. A clinical study assessing the efficacy of sofosbuvir and ribavirin administered prior to liver transplantation to prevent HCV recurrence provided a unique opportunity to quantify nucleotide concentrations in human liver. We analyzed nucleotides using high-performance liquid chromatography coupled to tandem mass spectrometry in liver tissue from 30 HCV-infected patients with hepatocellular carcinoma who were administered sofosbuvir (400 mg/day) and ribavirin (1,000 to 1,200 mg/day) for 3 to 52 weeks prior to liver transplantation. Median total hepatic metabolite concentrations (the sum of nucleoside and mono-, di-, and triphosphates) were 77.1 µM for sofosbuvir and 361 µM for ribavirin in patients on therapy at the time of transplantation. Ribavirin and sofosbuvir efficiently loaded the liver, with total hepatic metabolite concentrations exceeding maximal levels in plasma by approximately 30-fold. Ribavirin metabolite levels suggest that its monophosphate is in great excess of its inhibition constant for IMP dehydrogenase and that its triphosphate is approaching the binding constant for incorporation by the HCV NS5B RNA-dependent RNA polymerase. In accordance with the potent antiviral activity of sofosbuvir, these results demonstrate that the liver triphosphate levels achieved following sofosbuvir administration greatly exceed the inhibition constant for HCV NS5B. In conclusion, this study expands the quantitative understanding of the pharmacology of sofosbuvir and ribavirin by establishing efficient hepatic delivery in the clinic. (This study has been registered at ClinicalTrials.gov under identifier NCT01559844.).


Assuntos
Antivirais/farmacocinética , Antivirais/uso terapêutico , Hepacivirus/efeitos dos fármacos , Hepacivirus/patogenicidade , Hepatite C/tratamento farmacológico , Fígado/metabolismo , Fígado/virologia , Ribavirina/farmacocinética , Ribavirina/uso terapêutico , Sofosbuvir/farmacocinética , Sofosbuvir/uso terapêutico , Idoso , Feminino , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade
5.
Artigo em Inglês | MEDLINE | ID: mdl-29866875

RESUMO

Delivery of pharmacologically active nucleoside triphosphate analogs to sites of viral infection is challenging. In prior work we identified a 2'-C-methyl-1'-cyano-7-deaza-adenosine C-nucleotide analog with desirable selectivity and potency for the treatment of hepatitis C virus (HCV) infection. However, the prodrug selected for clinical development, GS-6620, required a high dose for meaningful efficacy and had unacceptable variability due to poor oral absorption as a result of suboptimal solubility, intestinal metabolism, and efflux transport. While obtaining clinical proof of concept for the nucleotide analog, a more effective prodrug strategy would be necessary for clinical utility. Here, we report an alternative prodrug of the same nucleoside analog identified to address liabilities of GS-6620. A phosphoramidate prodrug containing the nonproteinogenic amino acid methylalanine, an isopropyl ester and phenol in the (S) conformation at phosphorous, GS2, was found to have improved solubility, intestinal stability, and hepatic activation. GS2 is a more selective substrate for hepatically expressed carboxyl esterase 1 (CES1) and is resistant to hydrolysis by more widely expressed hydrolases, including cathepsin A (CatA) and CES2. Unlike GS-6620, GS2 was not cleaved by intestinally expressed CES2 and, as a result, was stable in intestinal extracts. Levels of liver triphosphate following oral administration of GS2 in animals were higher than those of GS-6620, even when administered under optimal conditions for GS-6620 absorption. Combined, these properties suggest that GS2 will have better oral absorption in the clinic when administered in a solid dosage form and the potential to extend the clinical proof of concept obtained with GS-6620.


Assuntos
Antivirais/uso terapêutico , Hepacivirus/patogenicidade , Nucleotídeos/uso terapêutico , Pró-Fármacos/uso terapêutico , Triazinas/uso terapêutico , Adenosina/análogos & derivados , Administração Oral , Alanina , Animais , Antivirais/administração & dosagem , Antivirais/farmacocinética , Células CACO-2 , Células Cultivadas , Cães , Hepacivirus/efeitos dos fármacos , Hepatite C/virologia , Humanos , Masculino , Nucleotídeos/administração & dosagem , Nucleotídeos/farmacocinética , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacocinética , Ratos , Triazinas/administração & dosagem , Triazinas/farmacocinética , Replicação Viral/efeitos dos fármacos
6.
Clin Gastroenterol Hepatol ; 16(12): 1983-1991.e3, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29705265

RESUMO

BACKGROUND & AIMS: Increased de novo lipogenesis (DNL) contributes to the pathogenesis of nonalcoholic steatohepatitis (NASH). Acetyl-CoA carboxylase catalyzes the rate-limiting step in DNL. We evaluated the safety and efficacy of GS-0976, a small molecule inhibitor of acetyl-CoA carboxylase, in patients with NASH. METHODS: In an open-label prospective study, patients with NASH (n = 10) received GS-0976 20 mg orally once daily for 12 weeks. NASH was diagnosed based on a proton density fat fraction estimated by magnetic resonance imaging (MRI-PDFF) ≥10% and liver stiffness by magnetic resonance elastography (MRE) ≥2.88 kPa. The contribution from hepatic DNL to plasma palmitate was measured by 14 days of heavy water labeling before and at the end of treatment. We performed the same labelling protocol in an analysis of healthy volunteers who were not given DNL (controls, n = 10). MRI-PDFF and MRE at baseline, and at weeks 4 and 12 of GS-0976 administration, were measured. We analyzed markers of liver injury and serum markers of fibrosis. RESULTS: The contribution of hepatic DNL to plasma palmitate was significantly greater in patients with NASH compared with controls (43% vs 18%) (P = .003). After 12 weeks administration of GS-0976, the median hepatic DNL was reduced 22% from baseline in patients with NASH (P = .004). Compared with baseline, reductions in MRI-PDFF at week 12 (15.7% vs 9.1% at baseline; P = .006), liver stiffness by MRE (3.4 kPa vs 3.1 kPa at baseline; P = .049), TIMP metallopeptidase inhibitor 1 (275 ng/mL vs 244 ng/mL at baseline; P = .049), and serum level of alanine aminotransferase (101 U/L vs 57 U/L at baseline; P = .23) were consistent with decreased hepatic lipid content and liver injury. At week 12, 7 patients (70%) had a ≥30% decrease in MRI-PDFF. CONCLUSION: In an open-label study, patients with NASH given GS-0976 for 12 weeks had reduced hepatic DNL, steatosis, and markers of liver injury. ClinicalTrials.gov no: NCT02856555.


Assuntos
Acetil-CoA Carboxilase/antagonistas & inibidores , Inibidores Enzimáticos/administração & dosagem , Isobutiratos/administração & dosagem , Lipogênese/efeitos dos fármacos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Hepatopatia Gordurosa não Alcoólica/patologia , Oxazóis/administração & dosagem , Pirimidinas/administração & dosagem , Administração Oral , Adolescente , Adulto , Idoso , Técnicas de Imagem por Elasticidade , Inibidores Enzimáticos/efeitos adversos , Feminino , Humanos , Isobutiratos/efeitos adversos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Oxazóis/efeitos adversos , Estudos Prospectivos , Pirimidinas/efeitos adversos , Resultado do Tratamento , Adulto Jovem
7.
Drug Metab Dispos ; 46(2): 189-196, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29138286

RESUMO

Protein expression of major hepatobiliary drug transporters (NTCP, OATPs, OCT1, BSEP, BCRP, MATE1, MRPs, and P-gp) in cancerous (C, n = 8) and adjacent noncancerous (NC, n = 33) liver tissues obtained from patients with chronic hepatitis C with hepatocellular carcinoma (HCV-HCC) were quantified by LC-MS/MS proteomics. Herein, we compare our results with our previous data from noninfected, noncirrhotic (control, n = 36) and HCV-cirrhotic (n = 30) livers. The amount of membrane protein yielded from NC and C HCV-HCC tissues decreased (31%, 67%) relative to control livers. In comparison with control livers, with the exception of NTCP, MRP2, and MATE1, transporter expression decreased in NC (38%-76%) and C (56%-96%) HCV-HCC tissues. In NC HCV-HCC tissues, NTCP expression increased (113%), MATE1 expression decreased (58%), and MRP2 expression was unchanged relative to control livers. In C HCV-HCC tissues, NTCP and MRP2 expression decreased (63%, 56%) and MATE1 expression was unchanged relative to control livers. Compared with HCV-cirrhotic livers, aside from NTCP, OCT1, BSEP, and MRP2, transporter expression decreased in NC (41%-71%) and C (54%-89%) HCV-HCC tissues. In NC HCV-HCC tissues, NTCP and MRP2 expression increased (362%, 142%), whereas OCT1 and BSEP expression was unchanged. In C HCV-HCC tissues, OCT1 and BSEP expression decreased (90%, 80%) relative to HCV-cirrhotic livers, whereas NTCP and MRP2 expression was unchanged. Expression of OATP2B1, BSEP, MRP2, and MRP3 decreased (56%-72%) in C HCV-HCC tissues in comparison with matched NC tissues (n = 8), but the expression of other transporters was unchanged. These data will be helpful in the future to predict transporter-mediated hepatocellular drug concentrations in patients with HCV-HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Hepatite C Crônica/metabolismo , Neoplasias Hepáticas/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos
8.
Drug Metab Dispos ; 45(1): 76-85, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27803021

RESUMO

Inhibition of thiamine transporters has been proposed as a putative mechanism for the observation of Wernicke's encephalopathy and subsequent termination of clinical development of fedratinib, a Janus kinase inhibitor (JAKi). This study aimed to determine the potential for other JAKi to inhibit thiamine transport using human epithelial colorectal adenocarcinoma (Caco-2) and thiamine transporter (THTR) overexpressing cells and to better elucidate the structural basis for interacting with THTR. Only JAKi containing a 2,4-diaminopyrimidine were observed to inhibit thiamine transporters. Fedratinib inhibited thiamine uptake into Caco-2 cells (IC50 = 0.940 µM) and THTR-2 (IC50 = 1.36 µM) and, to a lesser extent, THTR-1 (IC50 = 7.10 µM) overexpressing cells. Two other JAKi containing this moiety, AZD1480 and cerdulatinib, were weaker inhibitors of the thiamine transporters. Other JAKi-including monoaminopyrimidines, such as momelotinib, and nonaminopyrimidines, such as filgotinib-did not have any inhibitory effects on thiamine transport. A pharmacophore model derived from the minimized structure of thiamine suggests that 2,4-diaminopyrimidine-containing compounds can adopt a conformation matching several key features of thiamine. Further studies with drugs containing a 2,4-diaminopyrimidine resulted in the discovery that the antibiotic trimethoprim also potently inhibits thiamine uptake mediated by THTR-1 (IC50 = 6.84 µM) and THTR-2 (IC50 = 5.56 µM). Fedratinib and trimethoprim were also found to be substrates for THTR, a finding with important implications for their disposition in the body. In summary, our results show that not all JAKi have the potential to inhibit thiamine transport and further establish the interaction of these transporters with xenobiotics.


Assuntos
Inibidores de Janus Quinases/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Pirimidinas/química , Pirrolidinas/farmacologia , Sulfonamidas/farmacologia , Trimetoprima/farmacologia , Células CACO-2 , Interações Medicamentosas , Células HEK293 , Humanos , Inibidores de Janus Quinases/química , Proteínas de Membrana Transportadoras/genética , Estrutura Molecular , Pirrolidinas/química , Especificidade por Substrato , Sulfonamidas/química , Tiamina/metabolismo , Trimetoprima/química
9.
Bioorg Med Chem Lett ; 27(8): 1840-1847, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28274633

RESUMO

A series of 2'-fluorinated C-nucleosides were prepared and tested for anti-HCV activity. Among them, the triphosphate of 2'-fluoro-2'-C-methyl adenosine C-nucleoside (15) was a potent and selective inhibitor of the NS5B polymerase and maintained activity against the S282T resistance mutant. A number of phosphoramidate prodrugs were then prepared and evaluated leading to the identification of the 1-aminocyclobutane-1-carboxylic acid isopropyl ester variant (53) with favorable pharmacokinetic properties including efficient liver delivery in animals.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Amidas/química , Amidas/farmacocinética , Amidas/farmacologia , Animais , Antivirais/farmacocinética , Células CACO-2 , Linhagem Celular , Cricetinae , Descoberta de Drogas , Farmacorresistência Viral , Halogenação , Hepacivirus/genética , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Humanos , Metilação , Simulação de Acoplamento Molecular , Nucleosídeos/farmacocinética , Ácidos Fosfóricos/química , Ácidos Fosfóricos/farmacocinética , Ácidos Fosfóricos/farmacologia , Mutação Puntual , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
10.
J Infect Dis ; 214(7): 1058-62, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27465645

RESUMO

Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir that efficiently delivers tenofovir diphosphate to lymphoid cells following oral administration. We investigated whether the combination of TAF and emtricitabine (FTC) could prevent simian/human immunodeficiency virus (SHIV) infection in macaques to determine the potential use of TAF for pre-exposure prophylaxis (PrEP) to prevent human immunodeficiency virus infection. Macaques were exposed rectally to SHIV once per week for up to 19 weeks and received saline or FTC/TAF 24 hours before and 2 hours after each virus inoculation. All 6 controls were infected, while the 6 PrEP-treated animals were protected from infection. Our results support the clinical investigation of FTC/TAF for PrEP.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/administração & dosagem , Quimioprevenção/métodos , Emtricitabina/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Adenina/administração & dosagem , Alanina , Animais , Macaca , Tenofovir/análogos & derivados , Resultado do Tratamento
11.
Antimicrob Agents Chemother ; 60(2): 806-17, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596942

RESUMO

Toxicity has emerged during the clinical development of many but not all nucleotide inhibitors (NI) of hepatitis C virus (HCV). To better understand the mechanism for adverse events, clinically relevant HCV NI were characterized in biochemical and cellular assays, including assays of decreased viability in multiple cell lines and primary cells, interaction with human DNA and RNA polymerases, and inhibition of mitochondrial protein synthesis and respiration. NI that were incorporated by the mitochondrial RNA polymerase (PolRMT) inhibited mitochondrial protein synthesis and showed a corresponding decrease in mitochondrial oxygen consumption in cells. The nucleoside released by the prodrug balapiravir (R1626), 4'-azido cytidine, was a highly selective inhibitor of mitochondrial RNA transcription. The nucleotide prodrug of 2'-C-methyl guanosine, BMS-986094, showed a primary effect on mitochondrial function at submicromolar concentrations, followed by general cytotoxicity. In contrast, NI containing multiple ribose modifications, including the active forms of mericitabine and sofosbuvir, were poor substrates for PolRMT and did not show mitochondrial toxicity in cells. In general, these studies identified the prostate cell line PC-3 as more than an order of magnitude more sensitive to mitochondrial toxicity than the commonly used HepG2 cells. In conclusion, analogous to the role of mitochondrial DNA polymerase gamma in toxicity caused by some 2'-deoxynucleotide analogs, there is an association between HCV NI that interact with PolRMT and the observation of adverse events. More broadly applied, the sensitive methods for detecting mitochondrial toxicity described here may help in the identification of mitochondrial toxicity prior to clinical testing.


Assuntos
Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/efeitos dos fármacos , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Mitocôndrias/efeitos dos fármacos , Linhagem Celular , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/farmacologia , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Nucleosídeos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA/genética , RNA Mitocondrial , Sofosbuvir/farmacologia , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Replicação Viral/efeitos dos fármacos
12.
Drug Metab Dispos ; 44(11): 1752-1758, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27543206

RESUMO

Although data are available on the change of expression/activity of drug-metabolizing enzymes in liver cirrhosis patients, corresponding data on transporter protein expression are not available. Therefore, using quantitative targeted proteomics, we compared our previous data on noncirrhotic control livers (n = 36) with the protein expression of major hepatobiliary transporters, breast cancer resistance protein (BCRP), bile salt export pump (BSEP), multidrug and toxin extrusion protein 1 (MATE1), multidrug resistance-associated protein (MRP)2, MRP3, MRP4, sodium taurocholate-cotransporting polypeptide (NTCP), organic anion-transporting polypeptides (OATP)1B1, 1B3, 2B1, organic cation transporter 1 (OCT1), and P-glycoprotein (P-gp) in alcoholic (n = 27) and hepatitis C cirrhosis (n = 30) livers. Compared with control livers, the yield of membrane protein from alcoholic and hepatitis C cirrhosis livers was significantly reduced by 56 and 67%, respectively. The impact of liver cirrhosis on transporter protein expression was transporter-dependent. Generally, reduced protein expression (per gram of liver) was found in alcoholic cirrhosis livers versus control livers, with the exception that the expression of MRP3 was increased, whereas no change was observed for MATE1, MRP2, OATP2B1, and P-gp. In contrast, the impact of hepatitis C cirrhosis on protein expression of transporters (per gram of liver) was diverse, showing an increase (MATE1), decrease (BSEP, MRP2, NTCP, OATP1B3, OCT1, and P-gp), or no change (BCRP, MRP3, OATP1B1, and 2B1). The expression of hepatobiliary transporter protein differed in different diseases (alcoholic versus hepatitis C cirrhosis). Finally, incorporation of protein expression of OATP1B1 in alcoholic cirrhosis into the Simcyp physiologically based pharmacokinetics cirrhosis module improved prediction of the disposition of repaglinide in liver cirrhosis patients. These transporter expression data will be useful in the future to predict transporter-mediated drug disposition in liver cirrhosis patients.


Assuntos
Etanol/metabolismo , Hepatite C/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteoma/metabolismo , Feminino , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Proteína 2 Associada à Farmacorresistência Múltipla , Proteômica/métodos
13.
Chem Res Toxicol ; 29(4): 545-63, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-26889774

RESUMO

Membrane transporters play a pivotal role in many organs to maintain their normal physiological functions and contribute significantly to drug absorption, distribution, and elimination. Knowledge gained from gene modified animal models or human genetic disorders has demonstrated that interruption of the transporter activity can lead to debilitating diseases or organ toxicities. Herein we describe transporter associated diseases and organ toxicities resulting from transporter gene deficiency or functional inhibition in the liver, kidney, gastrointestinal tract (GIT), and central nervous system (CNS). While proposing additional transporters as targets for drug-induced organ toxicity, strategies and future perspectives are discussed for transporter risk assessment in drug discovery and development.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Animais , Transporte Biológico , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/patologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/patologia , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana Transportadoras/genética
14.
Pharmacogenet Genomics ; 25(2): 82-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25485598

RESUMO

BACKGROUND: Tenofovir disoproxil fumarate (TDF) is a widely used antiretroviral agent with favorable efficacy, safety, and tolerability profiles. However, renal adverse events, including the rare Fanconi syndrome (FS), may occur in a small subset of patients treated for HIV infections. OBJECTIVES: The aim of this study was to identify genetic variants that may be associated with TDF-associated FS (TDF-FS). METHODS: DNA samples collected from 19 cases with TDF-FS and 36 matched controls were sequenced, and genetic association studies were conducted on eight candidate genes: ATP-binding cassette (ABC) transporters ABCC2 (MRP2) and ABCC4 (MRP4), solute carrier family members SLC22A6 (OAT1) and SLC22A8 (OAT3), adenylate kinases 2 (AK2) and 4 (AK4), chloride transporter CIC-5 CLCN5, and Lowe syndrome protein OCRL. The functional effects of a single nucleotide polymorphism (SNP) predicted to alter the transport of tenofovir were then investigated in cells expressing an identified variant of ABCC4. RESULTS: The case group showed a trend toward a higher proportion of rare alleles. Six SNPs in ABCC2 (three SNPs), ABCC4 (one SNP), and OCRL (two SNPs) were associated with TDF-FS case status; however, this association did not remain significant after correction for multiple testing. Six SNPs, present in OCRL (four SNPs) and ABCC2 (two SNPs), were significantly associated with increased serum creatinine levels in the cases, and this association remained significant after multiple test correction (P < 2 × 10). One synonymous SNP in ABCC2 (rs8187707, P = 2.10 × 10, ß = -73.3 ml/min/1.73 m(2)) was also significantly associated with the decreased estimated glomerular filtration rate of creatinine among cases. However, these results were driven by rare SNPs present in a small number of severely affected cases. Finally, a previously uncharacterized, nonsynonymous SNP, rs11568694, that was predicted to alter MRP4 function had no significant effect on tenofovir cellular accumulation in vitro. CONCLUSION: Although no single predictive genetic marker for the development of TDF-FS was identified, the findings from our study suggest that rare variants in multiple genes involved in the renal handling of tenofovir, and/or renal cell homeostasis, may be associated with increased susceptibility to TDF-FS.


Assuntos
Adenina/análogos & derivados , Fármacos Anti-HIV/uso terapêutico , Síndrome de Fanconi/induzido quimicamente , Síndrome de Fanconi/genética , Estudos de Associação Genética , Infecções por HIV/tratamento farmacológico , Organofosfonatos/uso terapêutico , Farmacogenética , Adenina/uso terapêutico , Alelos , Biomarcadores Farmacológicos/análise , Estudos de Casos e Controles , Síndrome de Fanconi/epidemiologia , Células HEK293 , Infecções por HIV/epidemiologia , Infecções por HIV/genética , HIV-1 , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Tenofovir
15.
Antimicrob Agents Chemother ; 59(6): 3563-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25870059

RESUMO

Tenofovir alafenamide (TAF) is a prodrug of tenofovir (TFV) currently in clinical evaluation for treatment for HIV and hepatitis B virus (HBV) infections. Since the target tissue for HBV is the liver, the hepatic delivery and metabolism of TAF in primary human hepatocytes in vitro and in dogs in vivo were evaluated here. Incubation of primary human hepatocytes with TAF resulted in high levels of the pharmacologically active metabolite tenofovir diphosphate (TFV-DP), which persisted in the cell with a half-life of >24 h. In addition to passive permeability, studies of transfected cell lines suggest that the hepatic uptake of TAF is also facilitated by the organic anion-transporting polypeptides 1B1 and 1B3 (OATP1B1 and OATP1B3, respectively). In order to inhibit HBV reverse transcriptase, TAF must be converted to the pharmacologically active form, TFV-DP. While cathepsin A is known to be the major enzyme hydrolyzing TAF in cells targeted by HIV, including lymphocytes and macrophages, TAF was primarily hydrolyzed by carboxylesterase 1 (CES1) in primary human hepatocytes, with cathepsin A making a small contribution. Following oral administration of TAF to dogs for 7 days, TAF was rapidly absorbed. The appearance of the major metabolite TFV in plasma was accompanied by a rapid decline in circulating TAF. Consistent with the in vitro data, high and persistent levels of TFV-DP were observed in dog livers. Notably, higher liver TFV-DP levels were observed after administration of TAF than those given TDF. These results support the clinical testing of once-daily low-dose TAF for the treatment of HBV infection.


Assuntos
Adenina/análogos & derivados , Vírus da Hepatite B/efeitos dos fármacos , Hepatócitos/metabolismo , Adenina/metabolismo , Adenina/farmacocinética , Adenina/farmacologia , Alanina , Animais , Células Cultivadas , Cães , Vírus da Hepatite B/patogenicidade , Hepatócitos/efeitos dos fármacos , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Organofosfatos/metabolismo , Tenofovir/análogos & derivados
16.
Mol Pharm ; 12(12): 4301-10, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26528626

RESUMO

The biguanide metformin is widely used as first-line therapy for the treatment of type 2 diabetes. Predominately a cation at physiological pH's, metformin is transported by membrane transporters, which play major roles in its absorption and disposition. Recently, our laboratory demonstrated that organic cation transporter 1, OCT1, the major hepatic uptake transporter for metformin, was also the primary hepatic uptake transporter for thiamine, vitamin B1. In this study, we tested the reverse, i.e., that metformin is a substrate of thiamine transporters (THTR-1, SLC19A2, and THTR-2, SLC19A3). Our study demonstrated that human THTR-2 (hTHTR-2), SLC19A3, which is highly expressed in the small intestine, but not hTHTR-1, transports metformin (Km = 1.15 ± 0.2 mM) and other cationic compounds (MPP(+) and famotidine). The uptake mechanism for hTHTR-2 was pH and electrochemical gradient sensitive. Furthermore, metformin as well as other drugs including phenformin, chloroquine, verapamil, famotidine, and amprolium inhibited hTHTR-2 mediated uptake of both thiamine and metformin. Species differences in the substrate specificity of THTR-2 between human and mouse orthologues were observed. Taken together, our data suggest that hTHTR-2 may play a role in the intestinal absorption and tissue distribution of metformin and other organic cations and that the transporter may be a target for drug-drug and drug-nutrient interactions.


Assuntos
Interações Medicamentosas/fisiologia , Proteínas de Membrana Transportadoras/análise , Metformina/metabolismo , Tiamina/metabolismo , Animais , Transporte Biológico/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Absorção Intestinal/efeitos dos fármacos , Absorção Intestinal/fisiologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Camundongos , Especificidade por Substrato/fisiologia
18.
Kidney Int ; 86(2): 350-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24646860

RESUMO

Many xenobiotics including the pharmacoenhancer cobicistat increase serum creatinine by inhibiting its renal active tubular secretion without affecting the glomerular filtration rate. This study aimed to define the transporters involved in creatinine secretion, applying that knowledge to establish the mechanism for xenobiotic-induced effects. The basolateral uptake transporters organic anion transporter OAT2 and organic cation transporters OCT2 and OCT3 were found to transport creatinine. At physiologic creatinine concentrations, the specific activity of OAT2 transport was over twofold higher than OCT2 or OCT3, establishing OAT2 as a likely relevant creatinine transporter and further challenging the traditional view that creatinine is solely transported by a cationic pathway. The apical multidrug and toxin extrusion transporters MATE1 and MATE2-K demonstrated low-affinity and high-capacity transport. All drugs known to affect creatinine inhibited OCT2 and MATE1. Similar to cimetidine and ritonavir, cobicistat had the greatest effect on MATE1 with a 50% inhibition constant of 0.99 µM for creatinine transport. Trimethoprim potently inhibited MATE2-K, whereas dolutegravir preferentially inhibited OCT2. Cimetidine was unique, inhibiting all transporters that interact with creatinine. Thus, the clinical observation of elevated serum creatinine in patients taking cobicistat is likely a result of OCT2 transport, facilitating intracellular accumulation, and MATE1 inhibition.


Assuntos
Carbamatos/farmacologia , Creatinina/sangue , Creatinina/metabolismo , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/antagonistas & inibidores , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Tiazóis/farmacologia , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Células CHO , Linhagem Celular , Células Cultivadas , Cimetidina/farmacologia , Cobicistat , Cricetulus , Cães , Células HEK293 , Humanos , Cinética , Proteínas de Transporte de Cátions Orgânicos/antagonistas & inibidores , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico , Proteínas Recombinantes/metabolismo
19.
Antimicrob Agents Chemother ; 58(4): 1943-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419340

RESUMO

The anti-hepatitis C virus nucleotide prodrug GS-6620 employs a double-prodrug approach, with l-alanine-isopropyl ester and phenol moieties attached to the 5'-phosphate that release the nucleoside monophosphate in hepatocytes and a 3'-isobutyryl ester added to improve permeability and oral bioavailability. Consistent with the stability found in intestinal homogenates, following oral administration, intact prodrug levels in blood plasma were the highest in dogs, followed by monkeys, and then were the lowest in hamsters. In contrast, liver levels of the triphosphate metabolite at the equivalent surface area-adjusted doses were highest in hamsters, followed by in dogs and monkeys. Studies in isolated primary hepatocytes suggest that relatively poor oral absorption in hamsters and monkeys was compensated for by relatively efficient hepatocyte activation. As intestinal absorption was found to be critical to the effectiveness of GS-6620 in nonclinical species, stomach pH, formulation, and food effect studies were completed in dogs. Consistent with in vitro absorption studies in Caco-2 cells, the absorption of GS-6620 was found to be complex and highly dependent on concentration. Higher rates of metabolism were observed at lower concentrations that were unable to saturate intestinal efflux transporters. In first-in-human clinical trials, the oral administration of GS-6620 resulted in poor plasma exposure relative to that observed in dogs and in large pharmacokinetic and pharmacodynamic variabilities. While a double-prodrug approach, including a 3'-isobutyryl ester, provided higher intrinsic intestinal permeability, this substitution appeared to be a metabolic liability, resulting in extensive intestinal metabolism and relatively poor oral absorption in humans.


Assuntos
Antivirais/farmacocinética , Pró-Fármacos/farmacocinética , Administração Oral , Animais , Antivirais/farmacologia , Células CACO-2 , Linhagem Celular , Cricetinae , Cães , Hepacivirus/efeitos dos fármacos , Humanos , Macaca fascicularis , Masculino , Mesocricetus , Pró-Fármacos/farmacologia
20.
Antimicrob Agents Chemother ; 58(4): 1930-42, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419349

RESUMO

As a class, nucleotide inhibitors (NIs) of the hepatitis C virus (HCV) nonstructural protein 5B (NS5B) RNA-dependent RNA polymerase offer advantages over other direct-acting antivirals, including properties, such as pangenotype activity, a high barrier to resistance, and reduced potential for drug-drug interactions. We studied the in vitro pharmacology of a novel C-nucleoside adenosine analog monophosphate prodrug, GS-6620. It was found to be a potent and selective HCV inhibitor against HCV replicons of genotypes 1 to 6 and against an infectious genotype 2a virus (50% effective concentration [EC50], 0.048 to 0.68 µM). GS-6620 showed limited activities against other viruses, maintaining only some of its activity against the closely related bovine viral diarrhea virus (EC50, 1.5 µM). The active 5'-triphosphate metabolite of GS-6620 is a chain terminator of viral RNA synthesis and a competitive inhibitor of NS5B-catalyzed ATP incorporation, with Ki/Km values of 0.23 and 0.18 for HCV NS5B genotypes 1b and 2a, respectively. With its unique dual substitutions of 1'-CN and 2'-C-Me on the ribose ring, the active triphosphate metabolite was found to have enhanced selectivity for the HCV NS5B polymerase over host RNA polymerases. GS-6620 demonstrated a high barrier to resistance in vitro. Prolonged passaging resulted in the selection of the S282T mutation in NS5B that was found to be resistant in both cellular and enzymatic assays (>30-fold). Consistent with its in vitro profile, GS-6620 exhibited the potential for potent anti-HCV activity in a proof-of-concept clinical trial, but its utility was limited by the requirement of high dose levels and pharmacokinetic and pharmacodynamic variability.


Assuntos
Antivirais/química , Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Pró-Fármacos/farmacologia , Replicação Viral/efeitos dos fármacos , Antivirais/efeitos adversos , Linhagem Celular Tumoral , Sobrevivência Celular , Células Hep G2 , Humanos , Nucleosídeos/efeitos adversos , Pró-Fármacos/efeitos adversos , Pró-Fármacos/química , Proteínas não Estruturais Virais/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA