Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(6): 2415-2424, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38288711

RESUMO

Short-chain fatty acids (SCFAs) comprise the largest group of gut microbial fermentation products. While absorption of most nutrients occurs in the small intestine, indigestible dietary components, such as fiber, reach the colon and are processed by the gut microbiome to produce a wide array of metabolites that influence host physiology. Numerous studies have implicated SCFAs as key modulators of host health, such as in regulating irritable bowel syndrome (IBS). However, robust methods are still required for their detection and quantitation to meet the demands of biological studies probing the complex interplay of the gut-host-health paradigm. In this study, a sensitive, rapid-throughput, and readily expandible UHPLC-QqQ-MS platform using 2-PA derivatization was developed for the quantitation of gut-microbially derived SCFAs, related metabolites, and isotopically labeled homologues. The utility of this platform was then demonstrated by investigating the production of SCFAs in cecal contents from mice feeding studies, human fecal bioreactors, and fecal/bacterial fermentations of isotopically labeled dietary carbohydrates. Overall, the workflow proposed in this study serves as an invaluable tool for the rapidly expanding gut-microbiome and precision nutrition research field.


Assuntos
Microbioma Gastrointestinal , Espectrometria de Massa com Cromatografia Líquida , Humanos , Camundongos , Animais , Cromatografia Líquida , Microbioma Gastrointestinal/fisiologia , Espectrometria de Massas em Tandem , Ácidos Graxos Voláteis/metabolismo
2.
Mol Cell Proteomics ; 20: 100130, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34358619

RESUMO

N-glycosylation is a ubiquitous posttranslational modification that affects protein structure and function, including those of the central nervous system. N-glycans attached to cell membrane proteins play crucial roles in all aspects of biology, including embryogenesis, development, cell-cell recognition and adhesion, and cell signaling and communication. Although brain function and behavior are known to be regulated by the N-glycosylation state of numerous cell surface glycoproteins, our current understanding of brain glycosylation is limited, and glycan variations associated with functional brain regions remain largely unknown. In this work, we used a well-established cell surface glycomic nanoLC-Chip-Q-TOF platform developed in our laboratory to characterize the N-glycome of membrane fractions enriched in cell surface glycoproteins obtained from specific functional brain areas. We report the cell membrane N-glycome of two major developmental divisions of mice brain with specific and distinctive functions, namely the forebrain and hindbrain. Region-specific glycan maps were obtained with ∼120 N-glycan compositions in each region, revealing significant differences in "brain-type" glycans involving high mannose, bisecting, and core and antenna fucosylated species. Additionally, the cell membrane N-glycome of three functional regions of the forebrain and hindbrain, the cerebral cortex, hippocampus, and cerebellum, was characterized. In total, 125 N-glycan compositions were identified, and their region-specific expression profiles were characterized. Over 70 N-glycans contributed to the differentiation of the cerebral cortex, hippocampus, and cerebellum N-glycome, including bisecting and branched glycans with varying degrees of core and antenna fucosylation and sialylation. This study presents a comprehensive spatial distribution of the cell-membrane enriched N-glycomes associated with five discrete anatomical and functional brain areas, providing evidence for the presence of a previously unknown brain glyco-architecture. The region-specific molecular glyco fingerprints identified here will enable a better understanding of the critical biological roles that N-glycans play in the specialized functional brain areas in health and disease.


Assuntos
Encéfalo/metabolismo , Membrana Celular/metabolismo , Polissacarídeos/metabolismo , Animais , Cromatografia Líquida , Feminino , Glicômica , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Nanotecnologia
3.
Int J Obes (Lond) ; 45(2): 348-357, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32917985

RESUMO

OBJECTIVE: Activation of vagal afferent neurons (VAN) by postprandial gastrointestinal signals terminates feeding and facilitates nutrient digestion and absorption. Leptin modulates responsiveness of VAN to meal-related gastrointestinal signals. Rodents with high-fat diet (HF) feeding develop leptin resistance that impairs responsiveness of VAN. We hypothesized that lack of leptin signaling in VAN reduces responses to meal-related signals, which in turn decreases absorption of nutrients and energy storage from high-fat, calorically dense food. METHODS: Mice with conditional deletion of the leptin receptor from VAN (Nav1.8-Cre/LepRfl/fl; KO) were used in this study. Six-week-old male mice were fed a 45% HF for 4 weeks; metabolic phenotype, food intake, and energy expenditure were measured. Absorption and storage of nutrients were investigated in the refed state. RESULTS: After 4 weeks of HF feeding, KO mice gained less body weight and fat mass that WT controls, but this was not due to differences in food intake or energy expenditure. KO mice had reduced expression of carbohydrate transporters and absorption of carbohydrate in the jejunum. KO mice had fewer hepatic lipid droplets and decreased expression of de novo lipogenesis-associated enzymes and lipoproteins for endogenous lipoprotein pathway in liver, suggesting decreased long-term storage of carbohydrate in KO mice. CONCLUSIONS: Impairment of leptin signaling in VAN reduces responsiveness to gastrointestinal signals, which reduces intestinal absorption of carbohydrates and de novo lipogenesis resulting in reduced long-term energy storage. This study reveals a novel role of vagal afferents to support digestion and energy storage that may contribute to the effectiveness of vagal blockade to induce weight loss.


Assuntos
Carboidratos/genética , Dieta Hiperlipídica , Leptina/metabolismo , Fígado/metabolismo , Fígado/patologia , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Nervo Vago/metabolismo , Animais , Peso Corporal/genética , Metabolismo Energético/genética , Absorção Intestinal/genética , Lipogênese/genética , Masculino , Camundongos , Neurônios Aferentes/metabolismo , Nutrientes/metabolismo , Transdução de Sinais
4.
BMC Microbiol ; 20(1): 357, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225894

RESUMO

BACKGROUND: Bifidobacterium longum subsp. infantis (B. infantis) is a commensal bacterium that colonizes the gastrointestinal tract of breast-fed infants. B. infantis can efficiently utilize the abundant supply of oligosaccharides found in human milk (HMO) to help establish residence. We hypothesized that metabolites from B. infantis grown on HMO produce a beneficial effect on the host. RESULTS: In a previous study, we demonstrated that B. infantis routinely dominated the fecal microbiota of a breast fed Bangladeshi infant cohort (1). Characterization of the fecal metabolome of binned samples representing high and low B. infantis populations from this cohort revealed higher amounts of the tryptophan metabolite indole-3-lactic acid (ILA) in feces with high levels of B. infantis. Further in vitro analysis confirmed that B. infantis produced significantly greater quantities of the ILA when grown on HMO versus lactose, suggesting a growth substrate relationship to ILA production. The direct effects of ILA were assessed in a macrophage cell line and intestinal epithelial cell lines. ILA (1-10 mM) significantly attenuated lipopolysaccharide (LPS)-induced activation of NF-kB in macrophages. ILA significantly attenuated TNF-α- and LPS-induced increase in the pro-inflammatory cytokine IL-8 in intestinal epithelial cells. ILA increased mRNA expression of the aryl hydrogen receptor (AhR)-target gene CYP1A1 and nuclear factor erythroid 2-related factor 2 (Nrf2)-targeted genes glutathione reductase 2 (GPX2), superoxide dismutase 2 (SOD2), and NAD(P) H dehydrogenase (NQO1). Pretreatment with either the AhR antagonist or Nrf-2 antagonist inhibited the response of ILA on downstream effectors. CONCLUSIONS: These findings suggest that ILA, a predominant metabolite from B. infantis grown on HMO and elevated in infant stool high in B. infantis, and protects gut epithelial cells in culture via activation of the AhR and Nrf2 pathway.


Assuntos
Anti-Inflamatórios/farmacologia , Bifidobacterium/fisiologia , Indóis/farmacologia , Microbiota , Animais , Anti-Inflamatórios/análise , Bifidobacterium/metabolismo , Linhagem Celular , Endotoxinas/farmacologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Fezes/química , Fezes/microbiologia , Trato Gastrointestinal/metabolismo , Trato Gastrointestinal/microbiologia , Humanos , Indóis/análise , Lactente , Interleucina-8/metabolismo , Lactose/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Leite Humano/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oligossacarídeos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Am J Physiol Endocrinol Metab ; 316(4): E568-E577, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753113

RESUMO

Deletion of the leptin receptor from vagal afferent neurons (VAN) using a conditional deletion (Nav1.8/LepRfl/fl) results in an obese phenotype with increased food intake and lack of exogenous cholecystokinin (CCK)-induced satiation in male mice. Female mice are partially protected from weight gain and increased food intake in response to ingestion of high-fat (HF) diets. However, whether the lack of leptin signaling in VAN leads to an obese phenotype or disruption of hypothalamic-pituitary-gonadal axis function in female mice is unclear. Here, we tested the hypothesis that leptin signaling in VAN is essential to maintain estrogen signaling and control of food intake, energy expenditure, and adiposity in female mice. Female Nav1.8/LepRfl/fl mice gained more weight, had increased gonadal fat mass, increased meal number in the dark phase, and increased total food intake compared with wild-type controls. Resting energy expenditure was unaffected. The decrease in food intake produced by intraperitoneal injection of CCK (3 µg/kg body wt) was attenuated in female Nav1.8/LepRfl/fl mice compared with wild-type controls. Intraperitoneal injection of ghrelin (100 µg/kg body wt) increased food intake in Nav1.8/LepRfl/fl mice but not in wild-type controls. Ovarian steroidogenesis was suppressed, resulting in decreased plasma estradiol, which was accompanied by decreased expression of estrogen receptor-1 (Esr1) in VAN but not in the hypothalamic arcuate nucleus. These data suggest that the absence of leptin signaling in VAN is accompanied by disruption of estrogen signaling in female mice, leading to an obese phenotype possibly via altered control of feeding behavior.


Assuntos
Ingestão de Alimentos/genética , Comportamento Alimentar/fisiologia , Neurônios Aferentes/metabolismo , Obesidade/genética , Receptores para Leptina/genética , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Peso Corporal/genética , Colecistocinina/farmacologia , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético , Estradiol/metabolismo , Receptor alfa de Estrogênio/metabolismo , Estrogênios/metabolismo , Comportamento Alimentar/efeitos dos fármacos , Feminino , Grelina/farmacologia , Camundongos , Obesidade/metabolismo , Saciação , Nervo Vago/citologia , Aumento de Peso/genética
6.
Eur J Nutr ; 58(6): 2497-2510, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30069617

RESUMO

PURPOSE: Reduced ability of cholecystokinin (CCK) to induce satiation contributes to hyperphagia and weight gain in high-fat/high-sucrose (HF/HS) diet-induced obesity, and has been linked to altered gut microbiota. Rodent models of obesity use chow or low-fat (LF) diets as control diets; the latter has been shown to alter gut microbiota and metabolome. We aimed to determine whether LF-diet consumption impacts CCK satiation in rats and if so, whether this is prevented by addition of inulin to LF diet. METHODS: Rats (n = 40) were fed, for 8 weeks, a chow diet (chow) or low-fat (10%) or high-fat/high-sucrose (45 and 17%, respectively) refined diets with either 10% cellulose (LF and HF/HS) or 10% inulin (LF-I and HF/HS-I). Caecal metabolome was assessed by 1H-NMR-based metabolomics. CCK satiation was evaluated by measuring the suppression of food intake after intraperitoneal CCK injection (1 or 3 µg/kg). RESULTS: LF-diet consumption altered the caecal metabolome, reduced caecal weight, and increased IAP activity, compared to chow. CCK-induced inhibition of food intake was abolished in LF diet-fed rats compared to chow-fed rats, while HF/HS diet-fed rats responded only to the highest CCK dose. Inulin substitution ameliorated caecal atrophy, reduced IAP activity, and modulated caecal metabolome, but did not improve CCK-induced satiety in either LF- or HF/HS-fed rats. CONCLUSIONS: CCK signaling is impaired by LF-diet consumption, highlighting that caution must be taken when using LF diet until a more suitable refined control diet is identified.


Assuntos
Colecistocinina/metabolismo , Dieta com Restrição de Gorduras/métodos , Saciação/fisiologia , Animais , Masculino , Modelos Animais , Ratos , Ratos Wistar
7.
Gastroenterology ; 163(6): 1475-1476, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36007541
8.
Br J Nutr ; 120(10): 1131-1148, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30400999

RESUMO

Malnutrition remains a leading contributor to the morbidity and mortality of children under the age of 5 years and can weaken the immune system and increase the severity of concurrent infections. Livestock milk with the protective properties of human milk is a potential therapeutic to modulate intestinal microbiota and improve outcomes. The aim of this study was to develop an infection model of childhood malnutrition in the pig to investigate the clinical, intestinal and microbiota changes associated with malnutrition and enterotoxigenic Escherichia coli (ETEC) infection and to test the ability of goat milk and milk from genetically engineered goats expressing the antimicrobial human lysozyme (hLZ) milk to mitigate these effects. Pigs were weaned onto a protein-energy-restricted diet and after 3 weeks were supplemented daily with goat, hLZ or no milk for a further 2 weeks and then challenged with ETEC. The restricted diet enriched faecal microbiota in Proteobacteria as seen in stunted children. Before infection, hLZ milk supplementation improved barrier function and villous height to a greater extent than goat milk. Both goat and hLZ milk enriched for taxa (Ruminococcaceae) associated with weight gain. Post-ETEC infection, pigs supplemented with hLZ milk weighed more, had improved Z-scores, longer villi and showed more stable bacterial populations during ETEC challenge than both the goat and no milk groups. This model of childhood disease was developed to test the confounding effects of malnutrition and infection and demonstrated the potential use of hLZ goat milk to mitigate the impacts of malnutrition and infection.


Assuntos
Ração Animal , Infecções por Escherichia coli/terapia , Desnutrição/terapia , Leite/química , Muramidase/química , Animais , Animais Geneticamente Modificados , Peso Corporal , Dieta , Suplementos Nutricionais , Modelos Animais de Doenças , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli/microbiologia , Fezes , Feminino , Microbioma Gastrointestinal , Genótipo , Cabras , Enteropatias , Intestinos/microbiologia , Masculino , Tamanho do Órgão , Permeabilidade , Suínos , Desmame
9.
Am J Physiol Gastrointest Liver Physiol ; 312(5): G474-G487, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28280143

RESUMO

Microbial dysbiosis and increased intestinal permeability are targets for prevention or reversal of weight gain in high-fat (HF) diet-induced obesity (DIO). Prebiotic milk oligosaccharides (MO) have been shown to benefit the host intestine but have not been used in DIO. We hypothesized that supplementation with bovine MO would prevent the deleterious effect of HF diet on the gut microbiota and intestinal permeability and attenuate development of the obese phenotype. C57BL/6 mice were fed a control diet, HF (40% fat/kcal), or HF + prebiotic [6%/kg bovine milk oligosaccharides (BMO) or inulin] for 1, 3, or 6 wk. Gut microbiota and intestinal permeability were assessed in the ileum, cecum, and colon. Addition of BMO to the HF diet significantly attenuated weight gain, decreased adiposity, and decreased caloric intake; inulin supplementation also lowered weight gain and adiposity, but this did not reach significance. BMO and inulin completely abolished the HF diet-induced increase in paracellular and transcellular permeability in the small and large intestine. Both BMO and inulin increased abundance of beneficial microbes Bifidobacterium and Lactobacillus in the ileum. However, inulin supplementation altered phylogenetic diversity and decreased species richness. We conclude that addition of BMO to the HF diet completely prevented increases in intestinal permeability and microbial dysbiosis and was partially effective to prevent weight gain in DIO.NEW & NOTEWORTHY This study provides the first report of the effects of prebiotic bovine milk oligosaccharides on the host phenotype of high-fat diet-induced obesity in mice.


Assuntos
Disbiose/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Absorção Intestinal/efeitos dos fármacos , Leite/química , Obesidade/prevenção & controle , Oligossacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Animais , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Disbiose/etiologia , Disbiose/microbiologia , Disbiose/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/fisiopatologia , Resultado do Tratamento
10.
J Dairy Sci ; 100(4): 2471-2481, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28131576

RESUMO

Obesity is characterized by altered gut homeostasis, including dysbiosis and increased gut permeability closely linked to the development of metabolic disorders. Milk oligosaccharides are complex sugars that selectively enhance the growth of specific beneficial bacteria in the gastrointestinal tract and could be used as prebiotics. The aim of the study was to demonstrate the effects of bovine milk oligosaccharides (BMO) and Bifidobacterium longum ssp. infantis (B. infantis) on restoring diet-induced obesity intestinal microbiota and barrier function defects in mice. Male C57/BL6 mice were fed a Western diet (WD, 40% fat/kcal) or normal chow (C, 14% fat/kcal) for 7 wk. During the final 2 wk of the study, the diet of a subgroup of WD-fed mice was supplemented with BMO (7% wt/wt). Weekly gavage of B. infantis was performed in all mice starting at wk 3, yet B. infantis could not be detected in any luminal contents when mice were killed. Supplementation of the WD with BMO normalized the cecal and colonic microbiota with increased abundance of Lactobacillus compared with both WD and C mice and restoration of Allobaculum and Ruminococcus levels to that of C mice. The BMO supplementation reduced WD-induced increase in paracellular and transcellular flux in the large intestine as well as mRNA levels of the inflammatory marker tumor necrosis factor α. In conclusion, BMO are promising prebiotics to modulate gut microbiota and intestinal barrier function for enhanced health.


Assuntos
Disbiose , Leite/metabolismo , Animais , Bovinos , Dieta , Inflamação , Camundongos , Camundongos Obesos , Oligossacarídeos/metabolismo , Permeabilidade
11.
J Vet Med Educ ; 44(3): 480-489, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28876993

RESUMO

Beginning in 2005, the Doctor of Veterinary Medicine program at the University of California underwent major curricular review and reform. To provide information for others that follow, we have documented our process and commented on factors that were critical to success, as well as factors we found surprising, difficult, or problematic. The review and reform were initiated by the Executive Committee, who led the process and commissioned the committees. The planning stage took 6 years and involved four faculty committees, while the implementation stage took 5 years and was led by the Curriculum Committee. We are now in year 2 of the institutionalizing stage and no longer refer to our reform as the "new curriculum." The change was driven by a desire to improve the curriculum and the learning environment of the students by aligning the delivery of information with current teaching methodologies and implementing adult learning strategies. We moved from a department- and discipline-based curriculum to a school-wide integrated block curriculum that emphasized student-centered, inquiry-based learning. A limit was placed on in-class time to allow students to apply classroom knowledge by solving problems and cases. We found the journey long and arduous, requiring tremendous commitment and effort. In the change process, we learned the importance of adequate planning, leadership, communication, and a reward structure for those doing the "heavy lifting." Specific to our curricular design, we learned the importance of the block leader role, of setting clear expectations for students, and of partnering with students on the journey.


Assuntos
Currículo/tendências , Educação em Veterinária/organização & administração , Aprendizagem Baseada em Problemas , Faculdades de Medicina Veterinária/organização & administração , Acreditação , California , Educação em Veterinária/normas , Humanos , Inovação Organizacional , Faculdades de Medicina Veterinária/normas
12.
Am J Physiol Gastrointest Liver Physiol ; 308(10): G840-51, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25747351

RESUMO

A causal relationship between the pathophysiological changes in the gut epithelium and altered gut microbiota with the onset of obesity have been suggested but not defined. The aim of this study was to determine the temporal relationship between impaired intestinal barrier function and microbial dysbiosis in the small and large intestine in rodent high-fat (HF) diet-induced obesity. Rats were fed HF diet (45% fat) or normal chow (C, 10% fat) for 1, 3, or 6 wk; food intake, body weight, and adiposity were measured. Barrier function ex vivo using FITC-labeled dextran (4,000 Da, FD-4) and horseradish peroxidase (HRP) probes in Ussing chambers, gene expression, and gut microbial communities was assessed. After 1 wk, there was an immediate but reversible increase in paracellular permeability, decrease in IL-10 expression, and decrease in abundance of genera within the class Clostridia in the ileum. In the large intestine, HRP flux and abundance of genera within the order Bacteroidales increased with time on the HF diet and correlated with the onset of increased body weight and adiposity. The data show immediate insults in the ileum in response to ingestion of a HF diet, which were rapidly restored and preceded increased passage of large molecules across the large intestinal epithelium. This study provides an understanding of microbiota dysbiosis and gut pathophysiology in diet-induced obesity and has identified IL-10 and Oscillospira in the ileum and transcellular flux in the large intestine as potential early impairments in the gut that might lead to obesity and metabolic disorders.


Assuntos
Gorduras na Dieta/metabolismo , Absorção Intestinal , Mucosa Intestinal/microbiologia , Mucosa Intestinal/fisiopatologia , Microbiota/fisiologia , Obesidade/microbiologia , Obesidade/fisiopatologia , Animais , Dieta Hiperlipídica , Masculino , Ratos , Ratos Wistar
13.
Gastroenterology ; 146(5): 1212-21, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24480616

RESUMO

BACKGROUND & AIMS: The study of intrinsic fluctuations in the blood oxygen level-dependent signal of functional magnetic resonance imaging can provide insight into the effect of physiologic states on brain processes. In an effort to better understand the brain-gut communication induced by the absorption and metabolism of nutrients in healthy lean and obese individuals, we investigated whether ingestion of nutritive and non-nutritive sweetened beverages differentially engages the hypothalamus and brainstem vagal pathways in lean and obese women. METHODS: In a 2-day, double-blind crossover study, 11 lean and 11 obese healthy women underwent functional magnetic resonance imaging scans after ingestion of 2 beverages of different sucrose content, but identical sweetness. During scans, subjects rested with eyes closed. RESULTS: Blood oxygen level-dependent fluctuations demonstrated significantly greater power in the highest frequency band (slow-3: 0.073-0.198 Hz) after ingestion of high-sucrose compared with low-sucrose beverages in the nucleus tractus solitarius for both groups. Obese women had greater connectivity between the right lateral hypothalamus and a reward-related brain region and weaker connectivity with homeostasis and gustatory-related brain regions than lean women. CONCLUSIONS: In a functional magnetic resonance imaging study, we observed sucrose-related changes in oscillatory dynamics of blood oxygen level-dependent fluctuations in brainstem and hypothalamus in lean and obese women. The observed frequency changes are consistent with a rapid vagally mediated mechanism due to nutrient absorption, rather than sweet taste receptor activation. These findings provide support for altered interaction between homeostatic and reward networks in obese individuals.


Assuntos
Tronco Encefálico/fisiopatologia , Sacarose Alimentar/administração & dosagem , Hipotálamo/fisiopatologia , Obesidade/fisiopatologia , Magreza/fisiopatologia , Administração Oral , Adulto , Bebidas , Mapeamento Encefálico/métodos , Tronco Encefálico/metabolismo , Estudos Cross-Over , Sacarose Alimentar/metabolismo , Método Duplo-Cego , Feminino , Homeostase , Humanos , Hipotálamo/metabolismo , Imageamento por Ressonância Magnética , Obesidade/metabolismo , Obesidade/psicologia , Oscilometria , Oxigênio/sangue , Recompensa , Saciação , Magreza/metabolismo , Magreza/psicologia , Fatores de Tempo , Nervo Vago/fisiopatologia , Adulto Jovem
14.
J Nutr ; 145(4): 672-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25833771

RESUMO

Emerging evidence has suggested a possible physiologic role for peripheral glucagon-like peptide 1 (GLP-1) in regulating glucose metabolism and food intake. The likely site of action of GLP-1 is on vagal afferent neurons (VANs). The vagal afferent pathway is the major neural pathway by which information about ingested nutrients reaches the central nervous system and influences feeding behavior. Peripheral GLP-1 acts on VANs to inhibit food intake. The mechanism of the GLP-1 receptor (GLP-1R) is unlike other gut-derived receptors; GLP-1Rs change their cellular localization according to feeding status rather than their protein concentrations. It is possible that several gut peptides are involved in mediating GLP-1R translocation. The mechanism of peripheral GLP-1R translocation still needs to be elucidated. We review data supporting the role of peripheral GLP-1 acting on VANs in influencing glucose homeostasis and feeding behavior. We highlight evidence demonstrating that GLP-1 interacts with ghrelin and leptin to induce satiation. Our aim was to understand the mechanism of peripheral GLP-1 in the development of noninvasive antiobesity treatments.


Assuntos
Ingestão de Alimentos/fisiologia , Grelina/sangue , Peptídeo 1 Semelhante ao Glucagon/sangue , Leptina/sangue , Neurônios Aferentes/metabolismo , Animais , Glicemia/metabolismo , Trato Gastrointestinal/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1 , Humanos , Receptores de Glucagon/metabolismo , Saciação/fisiologia , Transdução de Sinais
15.
Cell Physiol Biochem ; 32(6): 1878-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24356325

RESUMO

BACKGROUND/AIMS: Cholecystokinin 1-receptor (CCK1-R) activation by long chain fatty acid (LCFA) absorption stimulates vago-vagal reflex pathways in the brain stem. The present study determines whether this reflex also activates the cholinergic anti-inflammatory pathway, a pathway known to modulate cytokine release during endotoxemia. METHODS: Mesenteric lymph was obtained from wild type (WT) and CCK1-R knockout (CCK1-R(-/-)) mice intraperitoneally challenged with Lipopolysaccharid (LPS) (endotoxemic lymph, EL) and intestinally infused with vehicle or LCFA-enriched solution. The lymph was analyzed for TNFα, IL-6 and IL-10 concentration and administered to healthy recipient mice via jugular infusion. Alveolar wall thickness, myeloperoxidase (MPO) and TUNEL positive cells were determined in lung tissue of recipient mice. RESULTS: LCFA infusion in WT mice reduced TNFα concentration in EL by 49% compared to vehicle infusion, but had no effect in CCK1-R(-/-) mice. EL significantly increased the alveolar wall thickness, the number of MPO-positive and TUNEL-positive cells compared to control lymph administration. LCFA infusion in WT, but not in CCK1R(-/-) mice, significantly reduced these pathological effects of EL. CONCLUSION: During endotoxemia enteral LCFA absorption reduces TNFα release into mesenteric lymph and attenuates histomorphologic parameters of lung dysfunction. Failure to elicit this effect in CCK1R(-/-) mice demonstrates that anti-inflammatory properties of LCFAs are mediated through CCK1-Rs.


Assuntos
Pulmão/patologia , Receptor de Colecistocinina A/metabolismo , Animais , Endotoxemia/induzido quimicamente , Endotoxemia/metabolismo , Endotoxemia/patologia , Ácidos Graxos Insaturados , Interleucina-10/análise , Interleucina-6/análise , Lipopolissacarídeos , Linfonodos/efeitos dos fármacos , Linfonodos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Peroxidase/metabolismo , Receptor de Colecistocinina A/deficiência , Receptor de Colecistocinina A/genética , Fator de Necrose Tumoral alfa/análise
16.
Microbiome ; 11(1): 194, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37635250

RESUMO

BACKGROUND: Bifidobacteria represent an important gut commensal in humans, particularly during initial microbiome assembly in the first year of life. Enrichment of Bifidobacterium is mediated though the utilization of human milk oligosaccharides (HMOs), as several human-adapted species have dedicated genomic loci for transport and metabolism of these glycans. This results in the release of fermentation products into the gut lumen which may offer physiological benefits to the host. Synbiotic pairing of probiotic species with a cognate prebiotic delivers a competitive advantage, as the prebiotic provides a nutrient niche. METHODS: To determine the fitness advantage and metabolic characteristics of an HMO-catabolizing Bifidobacterium strain in the presence or absence of 2'-fucosyllactose (2'-FL), conventionally colonized mice were gavaged with either Bifidobacterium pseudocatenulatum MP80 (B.p. MP80) (as the probiotic) or saline during the first 3 days of the experiment and received water or water containing 2'-FL (as the prebiotic) throughout the study. RESULTS: 16S rRNA gene sequencing revealed that mice provided only B.p. MP80 were observed to have a similar microbiota composition as control mice throughout the experiment with a consistently low proportion of Bifidobacteriaceae present. Using 1H NMR spectroscopy, similar metabolic profiles of gut luminal contents and serum were observed between the control and B.p. MP80 group. Conversely, synbiotic supplemented mice exhibited dramatic shifts in their community structure across time with an overall increased, yet variable, proportion of Bifidobacteriaceae following oral inoculation. Parsing the synbiotic group into high and moderate bifidobacterial persistence based on the median proportion of Bifidobacteriaceae, significant differences in gut microbial diversity and metabolite profiles were observed. Notably, metabolites associated with the fermentation of 2'-FL by bifidobacteria were significantly greater in mice with a high proportion of Bifidobacteriaceae in the gut suggesting metabolite production scales with population density. Moreover, 1,2-propanediol, a fucose fermentation product, was only observed in the liver and brain of mice harboring high proportions of Bifidobacteriaceae. CONCLUSIONS: This study reinforces that the colonization of the gut with a commensal microorganism does not guarantee a specific functional output. Video Abstract.


Assuntos
Actinobacteria , Bifidobacterium pseudocatenulatum , Simbióticos , Humanos , Animais , Camundongos , RNA Ribossômico 16S/genética , Leite Humano , Oligossacarídeos , Bifidobacterium , Prebióticos
17.
J Physiol ; 590(3): 441-6, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22183718

RESUMO

The gut epithelium is a barrier between the 'outside' and 'inside' world. The major function of the epithelium is to absorb nutrients, ions and water, yet it must balance these functions with that of protecting the 'inside' world from potentially harmful toxins, irritants, bacteria and other pathogens that also exist in the gut lumen. The health of an individual depends upon the efficient digestion and absorption of all required nutrients from the diet. This requires sensing of meal components by gut enteroendocrine cells, activation of neural and humoral pathways to regulate gastrointestinal motor, secretory and absorptive functions, and also to regulate food intake and plasma levels of glucose. In this way, there is a balance between the delivery of food and the digestive and absorptive capacity of the intestine. Maintenance of the mucosal barrier likewise requires sensory detection of pathogens, toxins and irritants; breakdown of the epithelial barrier is associated with gut inflammation and may ultimately lead to inflammatory bowel disease. However, disruption of the barrier alone is not sufficient to cause frank inflammatory bowel disease. Several recent studies have provided compelling new evidence to suggest that changes in epithelial barrier function and inflammation are associated with and may even lead to altered regulation of body weight and glucose homeostasis. This article provides a brief review of some recent evidence to support the hypothesis that changes in the gut microbiota and alteration of gut epithelial function will perturb the homeostatic humoral and neural pathways controlling food intake and body weight.


Assuntos
Inflamação/complicações , Mucosa Intestinal/microbiologia , Obesidade/microbiologia , Animais , Humanos , Inflamação/microbiologia , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiologia
18.
Gastroenterology ; 140(3): 903-12, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20955703

RESUMO

BACKGROUND & AIMS: Long-chain fatty acid receptors G-protein-coupled receptor 40 (GPR40) (FFAR1) and GPR120 have been implicated in the chemosensation of dietary fats. I cells in the intestine secrete cholecystokinin (CCK), a peptide hormone that stimulates digestion of fat and protein, but these cells are rare and hard to identify. We sought to determine whether dietary fat-induced secretion of CCK is directly mediated by GPR40 expressed on I cells. METHODS: We used fluorescence-activated cell sorting to isolate a pure population of I cells from duodenal mucosa in transgenic mice that expressed green fluorescent protein under the control of the CCK promoter (CCK-enhanced green fluorescent protein [eGFP] bacterial artificial chromosome mice). CCK-eGFP cells were evaluated for GPR40 expression by quantitative reverse transcription polymerase chain reaction and immunostaining. GPR40(-/-) mice were bred with CCK-eGFP mice to evaluate functional relevance of GPR40 on long-chain fatty acid-stimulated increases in [Ca(2+)]i and CCK secretion in isolated CCK-eGFP cells. Plasma levels of CCK after olive oil gavage were compared between GPR40(+/+) and GPR40(-/-) mice. RESULTS: Cells that expressed eGFP also expressed GPR40; expression of GPR40 was 100-fold greater than that of cells that did not express eGFP. In vitro, linoleic, oleic, and linolenic acids increased [Ca(2+)]i; linolenic acid increased CCK secretion by 53% in isolated GPR40(+/+) cells that expressed eGFP. In contrast, in GPR40(-/-) that expressed eGFP, [Ca(2+)]i response to linoleic acid was reduced by 50% and there was no significant CCK secretion in response to linolenic acid. In mice, olive oil gavage significantly increased plasma levels of CCK compared with pregavage levels: 5.7-fold in GPR40(+/+) mice and 3.1-fold in GPR40(-/-) mice. CONCLUSIONS: Long-chain fatty acid receptor GPR40 induces secretion of CCK by I cells in response to dietary fat.


Assuntos
Colecistocinina/metabolismo , Duodeno/metabolismo , Células Enteroendócrinas/metabolismo , Ácidos Graxos/metabolismo , Mucosa Intestinal/metabolismo , Óleos de Plantas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Separação Celular/métodos , Colecistocinina/genética , Cromossomos Artificiais Bacterianos , Duodeno/citologia , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Imuno-Histoquímica , Mucosa Intestinal/citologia , Intubação Gastrointestinal , Ácido Linoleico/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Ácido Oleico/metabolismo , Azeite de Oliva , Óleos de Plantas/administração & dosagem , Regiões Promotoras Genéticas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima , Ácido alfa-Linolênico/metabolismo
19.
Am J Physiol Regul Integr Comp Physiol ; 302(6): R657-66, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22160540

RESUMO

Glucose in the gut lumen activates gut endocrine cells to release 5-HT, glucagon-like peptide 1/2 (GLP-1/2), and glucose-dependent insulinotropic polypeptide (GIP), which act to change gastrointestinal function and regulate postprandial plasma glucose. There is evidence that both release and action of incretin hormones is reduced in type 2 diabetes (T2D). We measured cellular activation of enteroendocrine and enterochromaffin cells, enteric neurons, and vagal afferent neurons in response to intestinal glucose in a model of type 2 diabetes mellitus, the UCD-T2DM rat. Prediabetic (PD), recent-diabetic (RD, 2 wk postonset), and 3-mo diabetic (3MD) fasted UCD-T2DM rats were given an orogastric gavage of vehicle (water, 0.5 ml /100 g body wt) or glucose (330 µmol/100 g body wt); after 6 min tissue was removed and cellular activation was determined by immunohistochemistry for phosphorylated calcium calmodulin-dependent kinase II (pCaMKII). In PD rats, pCaMKII immunoreactivity was increased in duodenal 5-HT (P < 0.001), K (P < 0.01) and L (P < 0.01) cells in response to glucose; glucose-induced activation of all three cell types was significantly reduced in RD and 3MD compared with PD rats. Immunoreactivity for GLP-1, but not GIP, was significantly reduced in RD and 3MD compared with PD rats (P < 0.01). Administration of glucose significantly increased pCaMKII in enteric and vagal afferent neurons in PD rats; glucose-induced pCaMKII immunoreactivity was attenuated in enteric and vagal afferent neurons (P < 0.01, P < 0.001, respectively) in RD and 3MD. These data suggest that glucose sensing in enteroendocrine and enterochromaffin cells and activation of neural pathways is markedly impaired in UCD-T2DM rats.


Assuntos
Vias Aferentes/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/fisiopatologia , Células Enteroendócrinas/metabolismo , Glucose/metabolismo , Nervo Vago/fisiopatologia , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Células Enterocromafins/metabolismo , Células Enterocromafins/patologia , Células Enteroendócrinas/patologia , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeos Semelhantes ao Glucagon/metabolismo , Resistência à Insulina/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Serotonina/metabolismo
20.
J Pediatr Gastroenterol Nutr ; 55(3): 321-7, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22383026

RESUMO

OBJECTIVES: Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk. Our laboratory has previously revealed gene clusters specifically linked to HMO metabolism in selected bifidobacteria isolated from fecal samples of infants. Our objective was to test the hypothesis that growth of selected bifidobacteria on HMO stimulates the intestinal epithelium. METHODS: Caco-2 and HT-29 cells were incubated with lactose (LAC)- or HMO-grown Bifidobacterium longum subsp infantis (B infantis) or B bifidum. Bacterial adhesion and translocation were measured by real-time quantitative polymerase chain reaction. Expression of pro- and anti-inflammatory cytokines and tight junction proteins was analyzed by real-time reverse transcriptase. Distribution of tight junction proteins was measured using immunofluorescent microscopy. RESULTS: We showed that HMO-grown B infantis had a significantly higher rate of adhesion to HT-29 cells compared with B bifidum. B infantis also induced expression of a cell membrane glycoprotein, P-selectin glycoprotein ligand-1. Both B infantis and B bifidum grown on HMO caused less occludin relocalization and higher expression of anti-inflammatory cytokine, interleukin-10 compared with LAC-grown bacteria in Caco-2 cells. B bifidum grown on HMO showed higher expression of junctional adhesion molecule and occludin in Caco-2 cells and HT-29 cells. There were no significant differences between LAC or HMO treatments in bacterial translocation. CONCLUSIONS: The study provides evidence for the specific relation between HMO-grown bifidobacteria and intestinal epithelial cells. To our knowledge, this is the first study describing HMO-induced changes in the bifidobacteria-intestinal cells interaction.


Assuntos
Aderência Bacteriana , Bifidobacterium , Colo/microbiologia , Mucosa Intestinal/microbiologia , Leite Humano/química , Oligossacarídeos , Células CACO-2 , Membrana Celular/metabolismo , Colo/metabolismo , Meios de Cultura , Células HT29 , Humanos , Interleucina-10/metabolismo , Mucosa Intestinal/metabolismo , Moléculas de Adesão Juncional/metabolismo , Glicoproteínas de Membrana/metabolismo , Ocludina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA