Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Biomater ; 25: 131-142, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26213371

RESUMO

We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen-50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 µm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. STATEMENT OF SIGNIFICANCE: This work developed collagen and gelatine-based scaffolds with structural, material and biological properties suitable for use in myocardial tissue regeneration. The novelty and significance of this research consist in elucidating the effect of the composition, origin of collagen and crosslinking concentration on the scaffold physical and cell-binding characteristics. We demonstrate that the standard carbodiimide concentrations used to crosslink collagenous scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against dissolution. The importance of this finding is that, by reducing crosslinking, the corresponding cell-reactive carboxylate anions (essential for integrin-mediated binding) remain intact and the native scaffold chemistry is retained. This offers a major step forward in the biological performance of tissue engineered scaffolds.


Assuntos
Colágeno/química , Reagentes de Ligações Cruzadas/química , Fenômenos Mecânicos , Alicerces Teciduais/química , Aminas/análise , Animais , Carbodi-Imidas/química , Bovinos , Comunicação Celular , Linhagem Celular Tumoral , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Peptídeos/química , Porosidade , Reologia , Solubilidade , Suspensões , Viscosidade , Água/química
5.
J Thromb Haemost ; 6(12): 2132-42, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18826391

RESUMO

BACKGROUND: Collagen acts as a potent surface for platelet adhesion and thrombus formation under conditions of blood flow. Studies using collagen-derived triple-helical peptides have identified the GXX'GER motif as an adhesive ligand for platelet integrin alpha2beta1, and (GPO)(n) as a binding sequence for the signaling collagen receptor, glycoprotein VI (GPVI). OBJECTIVE: The potency was investigated of triple-helical peptides, consisting of GXX'GER sequences within (GPO)(n) or (GPP)(n) motifs, to support flow-dependent thrombus formation. RESULTS: At a high-shear rate, immobilized peptides containing both the high-affinity alpha2beta1-binding motif GFOGER and the (GPO)(n) motif supported platelet aggregation and procoagulant activity, even in the absence of von Willebrand factor (VWF). With peptides containing only one of these motifs, co-immobilized VWF was needed for thrombus formation. The (GPO)(n) but not the (GPP)(n) sequence induced GPVI-dependent platelet aggregation and procoagulant activity. Peptides with intermediate affinity (GLSGER, GMOGER) or low-affinity (GASGER, GAOGER) alpha2beta1-binding motifs formed procoagulant thrombi only if both (GPO)(n) and VWF were present. At a low-shear rate, immobilized peptides with high- or low-affinity alpha2beta1-binding motifs mediated formation of thrombi with procoagulant platelets only in combination with (GPO)(n). CONCLUSIONS: Triple-helical peptides with specific receptor-binding motifs mimic the properties of native collagen I in thrombus formation by binding to both platelet collagen receptors. At a high-shear rate, either GPIb or high-affinity (but not low-affinity) GXX'GER mediates GPVI-dependent formation of procoagulant thrombi. By extension, high-affinity binding for alpha2beta1 can control the overall platelet-adhesive activity of native collagens.


Assuntos
Colágeno/química , Integrina alfa2beta1/metabolismo , Fragmentos de Peptídeos/metabolismo , Adesividade Plaquetária , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/etiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Células Cultivadas , Humanos , Mimetismo Molecular , Fragmentos de Peptídeos/síntese química , Ligação Proteica , Fator de von Willebrand/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-15914089

RESUMO

Cadmium uptake was studied in isolated adrenocortical cells of rainbow trout (Oncorhynchus mykiss) and yellow perch (Perca flavescens) to test the hypothesis that the greater sensitivity of trout cells to Cd-induced disruption of cortisol secretion observed in previous studies is correlated to higher level of metal accumulation. There was no evidence for interspecies differences in accumulation level, and a specific transport mechanism of similar affinity has been characterized in both fish species. However, inhibition of Cd uptake by calcium was observed in rainbow trout exclusively. The free metal ion Cd(2+) and chlorocomplexes CdCl(n)(2-n) both contribute to Cd accumulation with different level of contribution between fish species. We conclude that interspecies differences in sensitivity to Cd endocrine disrupting effect are not necessarily related to different levels of metal accumulation but would rather be linked to transport pathways and metal speciation. Cadmium/calcium competition for uptake could be a determinant of the early Cd-induced impaired cortisol secretion in trout but not perch cells.


Assuntos
Córtex Suprarrenal/citologia , Córtex Suprarrenal/metabolismo , Cádmio/metabolismo , Oncorhynchus mykiss/metabolismo , Percas/metabolismo , Animais , Cádmio/química , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Cor , Transporte de Íons , Cinética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA