Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurochem ; 132(1): 70-84, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25314656

RESUMO

Axonal regeneration after injury to the CNS is hampered by myelin-derived inhibitors, such as Nogo-A. Natural products, such as green tea, which are neuroprotective and safe for long-term therapy, would complement ongoing various pharmacological approaches. In this study, using nerve growth factor-differentiated neuronal-like Neuroscreen-1 cells, we show that extremely low concentrations of unfractionated green tea polyphenol mixture (GTPP) and its active ingredient, epigallocatechin-3-gallate (EGCG), prevent both the neurite outgrowth-inhibiting activity and growth cone-collapsing activity of Nogo-66 (C-terminal domain of Nogo-A). Furthermore, a synergistic interaction was observed among GTPP constituents. This preventive effect was dependent on 67-kDa laminin receptor (67LR) to which EGCG binds with high affinity. The antioxidants N-acetylcysteine and cell-permeable catalase abolished this preventive effect of GTPP and EGCG, suggesting the involvement of sublethal levels of H2 O2 in this process. Accordingly, exogenous sublethal concentrations of H2 O2 , added as a bolus dose (5 µM) or more effectively through a steady-state generation (1-2 µM), mimicked GTPP in counteracting the action of Nogo-66. Exogenous H2 O2 mediated this action by bypassing the requirement of 67LR. Taken together, these results show for the first time that GTPP and EGCG, acting through 67LR and elevating intracellular sublethal levels of H2 O2 , inhibit the antineuritogenic action of Nogo-A. Currently, several agents are being evaluated for overcoming axonal growth inhibitors to promote functional recovery after stroke and spinal cord injury. Epigallocatechin-3-gallate (EGCG), present in green tea polyphenol mixture (GTPP), prevents antineuritogenic activity of Nogo-A, a myelin-derived axonal growth inhibitor. The preventive action of EGCG involves the cell-surface-associated 67-kDa laminin receptor and H2 O2 . GTPP may complement ongoing efforts to treat neuronal injuries.>


Assuntos
Peróxido de Hidrogênio/farmacologia , Proteínas da Mielina/antagonistas & inibidores , Proteínas da Mielina/farmacologia , Neuritos/efeitos dos fármacos , Oxidantes/farmacologia , Polifenóis/farmacologia , Receptores de Laminina/efeitos dos fármacos , Chá/química , Animais , Células Cultivadas , Cones de Crescimento/efeitos dos fármacos , Camundongos , Proteínas Nogo , Polifenóis/química , Pseudópodes/efeitos dos fármacos
2.
Biochem Biophys Res Commun ; 445(1): 218-24, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24508265

RESUMO

Delivery of optimal amounts of brain-derived neurotrophic factor (BDNF) to regions of the brain affected by neurodegenerative diseases is a daunting task. Using natural products with neuroprotective properties, such as green tea polyphenols, would be a highly useful complementary approach for inexpensive long-term treatment of these diseases. In this study, we used PC12(TrkB) cells which ectopically express TrkB, a high affinity receptor for BDNF. They differentiate and induce neurite outgrowth in response to BDNF. Using this model, we show for the first time that treatment with extremely low concentrations (<0.1 µg/ml) of unfractionated green tea polyphenols (GTPP) and low concentrations (<0.5 µM) of their active ingredient, epigallocatechin-3-gallate (EGCG), potentiated the neuritogenic ability of a low concentration (2 ng/ml) of BDNF. A synergistic interaction was observed between GTPP constituents, where epigallocatechin and epicatechin, both individually lacking this activity, promoted the action of EGCG. GTPP-induced potentiation of BDNF action required the cell-surface associated 67 kDa laminin receptor (67LR) to which EGCG binds with high affinity. A cell-permeable catalase abolished GTPP/EGCG-induced potentiation of BDNF action, suggesting the possible involvement of H2O2 in the potentiation. Consistently, exogenous sublethal concentrations of H2O2, added as a bolus dose (5 µM) or more effectively through a steady-state generation (1 µM), potentiated BDNF action. Collectively, these results suggest that EGCG, dependent on 67 LR and H2O2, potentiates the neuritogenic action of BDNF. Intriguingly, this effect requires only submicromolar concentrations of EGCG. This is significant as extremely low concentrations of polyphenols are believed to reach the brain after drinking green tea.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Catequina/farmacologia , Neuritos/efeitos dos fármacos , Chá/química , Animais , Antioxidantes/farmacologia , Catequina/análogos & derivados , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Peso Molecular , Neuritos/fisiologia , Oxidantes/metabolismo , Oxidantes/farmacologia , Células PC12 , Polifenóis/farmacologia , Ratos , Receptor trkB/genética , Receptor trkB/metabolismo , Receptores de Laminina/química , Receptores de Laminina/metabolismo , Receptores de Laminina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA