Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sensors (Basel) ; 24(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38203083

RESUMO

This article focuses on the design of a sensor system for a non-planar surface, in particular a cylindrical shape, such as a kayak paddle. The main objective is to develop a piezoresistive sensor system to measure the pressure exerted by the hand on the shaft. The study begins with static characterization of the sensors, including dispersion analysis to assess their sensitivity, linearity and measurement range. A calibration process is carried out using a dedicated test bench, and an inverse viscoelastic model is used to establish an accurate relationship between the measured resistance and the corresponding pressure. The sensor system is connected to a data acquisition board equipped with an analog-to-digital converter (ADC) that enables the direct conversion of analog data into digital resistance values. Furthermore, Bluetooth Low Energy (BLE) wireless communication is employed to facilitate data transfer to a computer, enabling a detailed pressure mapping of the kayak paddle and real-time data collection. The calibrated sensors are then tested and validated on the kayak paddle, facilitating the mapping of pressure zones on the paddle surface. This mapping provides information for locating areas of high pressure exertion during kayaker movements.

2.
Anal Chem ; 93(19): 7266-7274, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33960190

RESUMO

Conventional measurements of kinetic constants currently in use are performed at equilibrium and may require large volumes, especially at a low association rate constant kon. If the measurements are made out of equilibrium, the values obtained may be biased by dilution of the sample with the flow of the running buffer. In some applications, the available sample volume can be very critical and requires the development of tools to measure kinetic constants with low volumes. In this paper, by combining an experimental, numerical and modeling approach, we propose a surface plasmon resonance-based method that relies on an out-of-equilibrium measurement using the effect of dilution by flow to its advantage. This new method should have a significant impact in biochemistry and medical research.


Assuntos
Técnicas Biossensoriais , Cinética , Ressonância de Plasmônio de Superfície
3.
Biotechnol Bioeng ; 110(2): 597-608, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22887128

RESUMO

In this article, we present a liver-kidney co-culture model in a micro fluidic biochip. The liver was modeled using HepG2/C3a and HepaRG cell lines and the kidney using MDCK cell lines. To demonstrate the synergic interaction between both organs, we investigated the effect of ifosfamide, an anticancerous drug. Ifosfamide is a prodrug which is metabolized by the liver to isophosforamide mustard, an active metabolite. This metabolism process also leads to the formation of chloroacetaldehyde, a nephrotoxic metabolite and acrolein a urotoxic one. In the biochips of MDCK cultures, we did not detect any nephrotoxic effects after 72 h of 50 µM ifosfamide exposure. However, in the liver-kidney biochips, the same 72 h exposure leads to a nephrotoxicity illustrated by a reduction of the number of MDCK cells (up to 30% in the HepaRG-MDCK) when compared to untreated co-cultures or treated MDCK monocultures. The reduction of the MDCK cell number was not related to a modification of the cell cycle repartition in ifosfamide treated cases when compared to controls. The ifosfamide biotransformation into 3-dechloroethylifosfamide, an equimolar byproduct of the chloroacetaldehyde production, was detected by mass spectrometry at a rate of apparition of 0.3 ± 0.1 and 1.1 ± 0.3 pg/h/biochips in HepaRG monocultures and HepaRG-MDCK co-cultures respectively. Any metabolite was detected in HepG2/C3a cultures. Furthermore, the ifosfamide treatment in HepaRG-MDCK co-culture system triggered an increase in the intracellular calcium release in MDCK cells on contrary to the treatment on MDCK monocultures. As 3-dechloroethylifosfamide is not toxic, we have tested the effect of equimolar choloroacetaldehyde concentration onto the MDCK cells. At this concentration, we found a quite similar calcium perturbation and MDCK nephrotoxicity via a reduction of 30% of final cell numbers such as in the ifosfamide HepaRG-MDCK co-culture experiments. Our results suggest that ifosfamide nephrotoxicity in a liver-kidney micro fluidic co-culture model using HepaRG-MDCK cells is induced by the metabolism of ifosfamide into chloroacetaldehyde whereas this pathway is not functional in HepG2/C3a-MDCK model. This study demonstrates the interest in the development of systemic organ-organ interactions using micro fluidic biochips. It also illustrated their potential in future predictive toxicity model using in vitro models as alternative methods.


Assuntos
Técnicas de Cocultura/métodos , Ifosfamida/toxicidade , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Técnicas Analíticas Microfluídicas/métodos , Análise Serial de Tecidos/métodos , Acetaldeído/análogos & derivados , Acetaldeído/toxicidade , Animais , Cálcio/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Cães , Corantes Fluorescentes , Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Rim/citologia , Fígado/citologia , Células Madin Darby de Rim Canino , Reação em Cadeia da Polimerase em Tempo Real
4.
Toxicol Appl Pharmacol ; 259(3): 270-80, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22230336

RESUMO

We have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Benzoquinonas/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Iminas/toxicidade , Técnicas Analíticas Microfluídicas/métodos , Acetaminofen/metabolismo , Analgésicos não Narcóticos/metabolismo , Benzoquinonas/metabolismo , Citoproteção , Perfilação da Expressão Gênica/métodos , Células Hep G2 , Humanos , Iminas/metabolismo , Metabolômica/métodos , Estresse Oxidativo , Proteômica/métodos
5.
Biotechnol Bioeng ; 108(7): 1704-15, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21337338

RESUMO

Current developments in tissue engineering and microtechnology fields allow the use of microfluidic biochip as microtools for in vitro investigations. In the present study, we describe the behavior of HepG2/C3a cells cultivated in a poly(dimethylsiloxane) (PDMS) microfluidic biochip coupled to a perfusion system. Cell culture in the microfluidic biochip for 96 h including 72 h of perfusion provoked a 24 h delay in cell growth compared to plate cultures. Inside the microfluidic biochip, few apoptosis, and necrosis were detected along the culture and 3D cell organization was observed. Regarding the hepatic metabolism, glucose and glutamine consumptions as well as albumin synthesis were maintained. A transcriptomic analysis performed at 96 h of culture using Affymetrix GeneChip demonstrated that 1,025 genes with a fold change above 1.8 were statistically differentially expressed in the microfluidic biochip cultures compared to plate cultures. Among those genes, phase I enzymes involved in the xenobiotic's metabolism such as the cytochromes P450 (CYP) 1A1/2, 2B6, 3A4, 3A5, and 3A7 were up-regulated. The CYP1A1/2 up-regulation was associated with the appearance of CYP1A1/2's activity evidenced by using EROD biotransformation assay. Several phase II enzymes such as sulfotransferases (SULT1A1 and SULT1A2), UDP-glucuronyltransferase (UGT1A1, UGT2B7) and phase III transporters (such as MDR1, MRP2) were also up-regulated. In conclusion, microfluidic biochip could and provide an important insight to exploring the xenobiotic's metabolism. Altogether, these results suggest that this kind of biochip could be considered as a new pertinent tool for predicting cell toxicity and clearance of xenobiotics in vitro.


Assuntos
Hepatócitos/fisiologia , Microfluídica/métodos , Engenharia Tecidual/métodos , Albuminas/metabolismo , Morte Celular , Linhagem Celular , Sobrevivência Celular , Dimetilpolisiloxanos , Perfilação da Expressão Gênica , Glucose/metabolismo , Glutamina/metabolismo , Hepatócitos/metabolismo , Humanos , Nylons
6.
Lab Chip ; 11(7): 1342-50, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21321748

RESUMO

In this work we report on the design, microfabrication and analytical performances of a new electrochemical sensor array (ESA) which allows for the first time the simultaneous amperometric detection of nitric oxide (NO) and peroxynitrite (ONOO(-)), two biologically relevant molecules. The on-chip device includes individually addressable sets of gold ultramicroelectrodes (UMEs) of 50 µm diameter, Ag/AgCl reference electrode and gold counter electrode. The electrodes are separated into two groups; each has one reference electrode, one counter electrode and 110 UMEs specifically tailored to detect a specific analyte. The ESA is incorporated on a custom interface with a cell culture well and spring contact pins that can be easily interconnected to an external multichannel potentiostat. Each UME of the network dedicated to the detection of NO is electrochemically modified by electrodepositing thin layers of poly(eugenol) and poly(phenol). The detection of NO is performed amperometrically at 0.8 V vs. Ag/AgCl in phosphate buffer solution (PBS, pH = 7.4) and other buffers adapted to biological cell culture, using a NO-donor. The network of UMEs dedicated to the detection of ONOO(-) is used without further chemical modification of the surface and the uncoated gold electrodes operate at -0.1 V vs. Ag/AgCl to detect the reduction of ONOOH in PBS. The selectivity issue of both sensors against major biologically relevant interfering analytes is examined. Simultaneous detection of NO and ONOO(-) in PBS is also achieved.


Assuntos
Técnicas de Química Analítica/instrumentação , Dispositivos Lab-On-A-Chip , Óxido Nítrico/análise , Ácido Peroxinitroso/análise , Eletroquímica , Desenho de Equipamento , Microeletrodos , Óxido Nítrico/química , Ácido Peroxinitroso/química , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA