RESUMO
Parkinson's disease is one of the most common age-related neurodegenerative disorders. Although predominantly a motor disorder, cognitive impairment and dementia are important features of Parkinson's disease, particularly in the later stages of the disease. However, the rate of cognitive decline varies among Parkinson's disease patients, and the genetic basis for this heterogeneity is incompletely understood. To explore the genetic factors associated with rate of progression to Parkinson's disease dementia, we performed a genome-wide survival meta-analysis of 3923 clinically diagnosed Parkinson's disease cases of European ancestry from four longitudinal cohorts. In total, 6.7% of individuals with Parkinson's disease developed dementia during study follow-up, on average 4.4 ± 2.4 years from disease diagnosis. We have identified the APOE ε4 allele as a major risk factor for the conversion to Parkinson's disease dementia [hazard ratio = 2.41 (1.94-3.00), P = 2.32 × 10-15], as well as a new locus within the ApoE and APP receptor LRP1B gene [hazard ratio = 3.23 (2.17-4.81), P = 7.07 × 10-09]. In a candidate gene analysis, GBA variants were also identified to be associated with higher risk of progression to dementia [hazard ratio = 2.02 (1.21-3.32), P = 0.007]. CSF biomarker analysis also implicated the amyloid pathway in Parkinson's disease dementia, with significantly reduced levels of amyloid ß42 (P = 0.0012) in Parkinson's disease dementia compared to Parkinson's disease without dementia. These results identify a new candidate gene associated with faster conversion to dementia in Parkinson's disease and suggest that amyloid-targeting therapy may have a role in preventing Parkinson's disease dementia.
Assuntos
Disfunção Cognitiva , Demência , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Demência/complicações , Disfunção Cognitiva/etiologia , Apolipoproteínas E/genética , Biomarcadores , Receptores de LDLRESUMO
Parkinson's disease has a large heritable component and genome-wide association studies have identified over 90 variants with disease-associated common variants, providing deeper insights into the disease biology. However, there have not been large-scale rare variant analyses for Parkinson's disease. To address this gap, we investigated the rare genetic component of Parkinson's disease at minor allele frequencies <1%, using whole genome and whole exome sequencing data from 7184 Parkinson's disease cases, 6701 proxy cases and 51 650 healthy controls from the Accelerating Medicines Partnership Parkinson's disease (AMP-PD) initiative, the National Institutes of Health, the UK Biobank and Genentech. We performed burden tests meta-analyses on small indels and single nucleotide protein-altering variants, prioritized based on their predicted functional impact. Our work identified several genes reaching exome-wide significance. Two of these genes, GBA1 and LRRK2, have variants that have been previously implicated as risk factors for Parkinson's disease, with some variants in LRRK2 resulting in monogenic forms of the disease. We identify potential novel risk associations for variants in B3GNT3, AUNIP, ADH5, TUBA1B, OR1G1, CAPN10 and TREML1 but were unable to replicate the observed associations across independent datasets. Of these, B3GNT3 and TREML1 could provide new evidence for the role of neuroinflammation in Parkinson's disease. To date, this is the largest analysis of rare genetic variants in Parkinson's disease.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Fatores de Risco , Frequência do Gene , Receptores ImunológicosRESUMO
BACKGROUND: Biallelic pathogenic variants in GBA1 are the cause of Gaucher disease (GD) type 1 (GD1), a lysosomal storage disorder resulting from deficient glucocerebrosidase. Heterozygous GBA1 variants are also a common genetic risk factor for Parkinson's disease (PD). GD manifests with considerable clinical heterogeneity and is also associated with an increased risk for PD. OBJECTIVE: The objective of this study was to investigate the contribution of PD risk variants to risk for PD in patients with GD1. METHODS: We studied 225 patients with GD1, including 199 without PD and 26 with PD. All cases were genotyped, and the genetic data were imputed using common pipelines. RESULTS: On average, patients with GD1 with PD have a significantly higher PD genetic risk score than those without PD (P = 0.021). CONCLUSIONS: Our results indicate that variants included in the PD genetic risk score were more frequent in patients with GD1 who developed PD, suggesting that common risk variants may affect underlying biological pathways. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Assuntos
Doença de Gaucher , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Gaucher/complicações , Doença de Gaucher/genética , Transtornos Parkinsonianos/genética , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Fatores de Risco , MutaçãoRESUMO
BACKGROUND: Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers. OBJECTIVE: To determine if blood biomarkers (serum neurofilament light (NfL) and genetic status (glucocerebrosidase, GBA and apolipoprotein E (APOE))) are useful in addition to clinical measures for prognostic modelling in PD. METHODS: We evaluated the relationship between serum NfL and baseline and longitudinal clinical measures as well as patients' genetic (GBA and APOE) status. We classified patients as having a favourable or an unfavourable outcome based on a previously validated model, and explored how blood biomarkers compared with clinical variables in distinguishing prognostic phenotypes . RESULTS: 291 patients were assessed in this study. Baseline serum NfL was associated with baseline cognitive status. Nfl predicted a shorter time to dementia, postural instability and death (dementia-HR 2.64; postural instability-HR 1.32; mortality-HR 1.89) whereas APOEe4 status was associated with progression to dementia (dementia-HR 3.12, 95% CI 1.63 to 6.00). NfL levels and genetic variables predicted unfavourable progression to a similar extent as clinical predictors. The combination of clinical, NfL and genetic data produced a stronger prediction of unfavourable outcomes compared with age and gender (area under the curve: 0.74-age/gender vs 0.84-ALL p=0.0103). CONCLUSIONS: Clinical trials of disease-modifying therapies might usefully stratify patients using clinical, genetic and NfL status at the time of recruitment.
RESUMO
In this season of public health crises and profound social unrest, we can draw inspiration from those who survived hard times and celebrated the American spirit. Here three students in an accelerated nursing program, poised for graduation in the coming year, join their insights and observation on the challenges facing this country with that of the famed troubadour of the Great Depression, Woody Guthrie. As nurses and public health practitioners, we commit to anthems of inclusion and justice for all.
Assuntos
Saúde Pública , Justiça Social , Humanos , Justiça Social/educaçãoRESUMO
In vivo optical imaging has emerged as a powerful tool with which to study cellular responses to injury and disease in the mammalian CNS. Important new insights have emerged regarding axonal degeneration and regeneration, glial responses and neuroinflammation, changes in the neurovascular unit, and, more recently, neural transplantations. Accompanying a 2017 SfN Mini-Symposium, here, we discuss selected recent advances in understanding the neuronal, glial, and other cellular responses to CNS injury and disease with in vivo imaging of the rodent brain or spinal cord. We anticipate that in vivo optical imaging will continue to be at the forefront of breakthrough discoveries of fundamental mechanisms and therapies for CNS injury and disease.
Assuntos
Doenças do Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/diagnóstico por imagem , Sistema Nervoso Central/lesões , Neuroimagem/métodos , Animais , Humanos , Camundongos , Neuroimagem/instrumentação , RatosRESUMO
Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be the key to understanding disease pathways and, ultimately, therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7804 patients of European ancestry from Tracking Parkinson's, The Oxford Discovery Cohort, and Accelerating Medicine Partnership-Parkinson's Disease Initiative. We conducted a discrete phenotype genome-wide association study comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk allele rs429358 tagging APOEe4 increases the odds of developing dementia, and that rs7668531 near the MMRN1 and SNCA-AS1 genes and an intronic variant rs17442721 tagging LRRK2 G2019S on chromosome 12 are protective against dementia. These results should be validated in autopsy-confirmed cases in future studies.
RESUMO
The Parkinson's Families Project is a UK-wide study aimed at identifying genetic variation associated with familial and early-onset Parkinson's disease (PD). We recruited individuals with a clinical diagnosis of PD and age at motor symptom onset ≤45 years and/or a family history of PD in up to third-degree relatives. Where possible, we also recruited affected and unaffected relatives. We analysed DNA samples with a combination of single nucleotide polymorphism (SNP) array genotyping, multiplex ligation-dependent probe amplification (MLPA), and whole-genome sequencing (WGS). We investigated the association between identified pathogenic mutations and demographic and clinical factors such as age at motor symptom onset, family history, motor symptoms (MDS-UPDRS) and cognitive performance (MoCA). We performed baseline genetic analysis in 718 families, of which 205 had sporadic early-onset PD (sEOPD), 113 had familial early-onset PD (fEOPD), and 400 had late-onset familial PD (fLOPD). 69 (9.6%) of these families carried pathogenic variants in known monogenic PD-related genes. The rate of a molecular diagnosis increased to 28.1% in PD with motor onset ≤35 years. We identified pathogenic variants in LRRK2 in 4.2% of families, and biallelic pathogenic variants in PRKN in 3.6% of families. We also identified two families with SNCA duplications and three families with a pathogenic repeat expansion in ATXN2, as well as single families with pathogenic variants in VCP, PINK1, PNPLA6, PLA2G6, SPG7, GCH1, and RAB32. An additional 73 (10.2%) families were carriers of at least one pathogenic or risk GBA1 variant. Most early-onset and familial PD cases do not have a known genetic cause, indicating that there are likely to be further monogenic causes for PD.
RESUMO
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder. Mendelian forms have revealed multiple genes, with a notable emphasis on membrane trafficking; RAB GTPases play an important role in PD as a subset are both regulators and substrates of LRRK2 protein kinase. To explore the role of RAB GTPases in PD, we undertook a comprehensive examination of their genetic variability in familial PD. Methods: Affected probands from 130 multi-incident PD families underwent whole-exome sequencing and genotyping, Potential pathogenic variants in 61 RAB GTPases were genotyped in relatives to assess disease segregation. These variants were also genotyped in a larger case-control series, totaling 3,078 individuals (2,734 with PD). The single most significant finding was subsequently validated within genetic data (6,043 with PD). Clinical and pathologic findings were summarized for gene-identified patients, and haplotypes were constructed. In parallel, wild-type and mutant RAB GTPase structural variation, protein interactions, and resultant enzyme activities were assessed. Findings: We found RAB32 c.213C>G (Ser71Arg) to co-segregate with autosomal dominant parkinsonism in three multi-incident families. RAB32 Ser71Arg was also significantly associated with PD in case-control samples: genotyping and database searches identified thirteen more patients with the same variant that was absent in unaffected controls. Notably, RAB32 Ser71Arg heterozygotes share a common haplotype. At autopsy, one patient had sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In transfected cells the RAB32 Arg71 was twice as potent as Ser71 wild type to activate LRRK2 kinase. Interpretation: Our study provides unequivocal evidence to implicate RAB32 Ser71Arg in PD. Functional analysis demonstrates LRRK2 kinase activation. We provide a mechanistic explanation to expand and unify the etiopathogenesis of monogenic PD. Funding: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J. Fox Foundation for Parkinson's Research, and the UK Medical Research Council.
RESUMO
BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.
Assuntos
Doença de Parkinson , Proteínas rab de Ligação ao GTP , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Canadá/epidemiologia , Estudos de Casos e Controles , Sequenciamento do Exoma , Ligação Genética/genética , Predisposição Genética para Doença/genética , Genótipo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Doença de Parkinson/genética , Proteínas rab de Ligação ao GTP/genética , TunísiaRESUMO
Bi-allelic pathogenic variants in PRKN are the most common cause of autosomal recessive Parkinson's disease (PD). 647 patients with PRKN-PD were included in this international study. The pathogenic variants present were characterised and investigated for their effect on phenotype. Clinical features and progression of PRKN-PD was also assessed. Among 133 variants in index cases (n = 582), there were 58 (43.6%) structural variants, 34 (25.6%) missense, 20 (15%) frameshift, 10 splice site (7.5%%), 9 (6.8%) nonsense and 2 (1.5%) indels. The most frequent variant overall was an exon 3 deletion (n = 145, 12.3%), followed by the p.R275W substitution (n = 117, 10%). Exon3, RING0 protein domain and the ubiquitin-like protein domain were mutational hotspots with 31%, 35.4% and 31.7% of index cases presenting mutations in these regions respectively. The presence of a frameshift or structural variant was associated with a 3.4 ± 1.6 years or a 4.7 ± 1.6 years earlier age at onset of PRKN-PD respectively (p < 0.05). Furthermore, variants located in the N-terminus of the protein, a region enriched with frameshift variants, were associated with an earlier age at onset. The phenotype of PRKN-PD was characterised by slow motor progression, preserved cognition, an excellent motor response to levodopa therapy and later development of motor complications compared to early-onset PD. Non-motor symptoms were however common in PRKN-PD. Our findings on the relationship between the type of variant in PRKN and the phenotype of the disease may have implications for both genetic counselling and the design of precision clinical trials.
RESUMO
There are 90 independent genome-wide significant genetic risk variants for Parkinson's disease (PD) but currently only five nominated loci for PD progression. The biology of PD progression is likely to be of central importance in defining mechanisms that can be used to develop new treatments. We studied 6766 PD patients, over 15,340 visits with a mean follow-up of between 4.2 and 15.7 years and carried out genome-wide survival studies for time to a motor progression endpoint, defined by reaching Hoehn and Yahr stage 3 or greater, and death (mortality). There was a robust effect of the APOE ε4 allele on mortality in PD. We also identified a locus within the TBXAS1 gene encoding thromboxane A synthase 1 associated with mortality in PD. We also report 4 independent loci associated with motor progression in or near MORN1, ASNS, PDE5A, and XPO1. Only the non-Gaucher disease causing GBA1 PD risk variant E326K, of the known PD risk variants, was associated with mortality in PD. Further work is needed to understand the links between these genomic variants and the underlying disease biology. However, these may represent new candidates for disease modification in PD.
RESUMO
BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.
Assuntos
Doença de Pick , Tauopatias , Feminino , Humanos , Masculino , Estudos de Associação Genética , Haplótipos , Doença de Pick/genética , Proteínas tau/genéticaRESUMO
Background and Objectives: The genetic basis of Parkinson disease (PD) motor progression is largely unknown. Previous studies of the genetics of PD progression have included small cohorts and shown a limited overlap with genetic PD risk factors from case-control studies. Here, we have studied genomic variation associated with PD motor severity and early-stage progression in large longitudinal cohorts to help to define the biology of PD progression and potential new drug targets. Methods: We performed a GWAS meta-analysis of early PD motor severity and progression up to 3 years from study entry. We used linear mixed-effect models with additive effects, corrected for age at diagnosis, sex, and the first 5 genetic principal components to assess variability in axial, limb, and total Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III scores. Results: We included 3,572 unrelated European ancestry patients with PD from 5 observational cohorts and 1 drug trial. The average AAO was 62.6 years (SD = 9.83), and 63% of participants were male. We found an average increase in the total MDS-UPDRS III score of 2.3 points/year. We identified an association between PD axial motor progression and variation at the GJA5 locus at 1q12 (ß = -0.25, SE = 0.04, p = 3.4e-10). Exploration of the regulation of gene expression in the region (cis-expression quantitative trait loci [eQTL] analysis) showed that the lead variant was associated with expression of ACP6, a lysophosphatidic acid phosphatase that regulates mitochondrial lipid biosynthesis (cis-eQTL p-values in blood and brain RNA expression data sets: <10-14 in eQTLGen and 10-7 in PsychEncode). Discussion: Our study highlights the potential role of mitochondrial lipid homeostasis in the progression of PD, which may be important in establishing new drug targets that might modify disease progression.
RESUMO
The genetic basis of levodopa-induced-dyskinesia (LiD) is poorly understood, and there have been few well-powered genome-wide studies. We performed a genome-wide survival meta-analyses to study the effect of genetic variation on the development of LiD in five separate longitudinal cohorts, and meta-analysed the results. We included 2784 PD patients, of whom 14.6% developed LiD. We found female sex (HR = 1.35, SE = 0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 × 10-5) increased the probability of developing LiD. We identified three genetic loci significantly associated with time-to-LiD onset. rs72673189 on chromosome 1 (HR = 2.77, SE = 0.18, P = 1.53 × 10-8) located at the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06, SE = 0.19, P = 2.81 × 10-9) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20, P = 6.27 × 10-9) in the XYLT1 locus. Based on a functional annotation analysis on chromosome 1, we determined that changes in DNAJB4 gene expression, close to LRP8, are an additional potential cause of increased susceptibility to LiD. Baseline anxiety status was significantly associated with LiD (OR = 1.14, SE = 0.03, P = 7.4 × 10-5). Finally, we performed a candidate variant analysis of previously reported loci, and found that genetic variability in ANKK1 (rs1800497, HR = 1.27, SE = 0.09, P = 8.89 × 10-3) and BDNF (rs6265, HR = 1.21, SE = 0.10, P = 4.95 × 10-2) loci were significantly associated with time to LiD in our large meta-analysis.
RESUMO
Importance: Forty percent of Parkinson's disease patients develop levodopa-induced-dyskinesia (LiD) within 4 years of starting levodopa. The genetic basis of LiD remains poorly understood, and there have been few well powered studies. Objective: To discover common genetic variants in the PD population that increase the probability of developing LiD. Design setting and Participants: We performed survival analyses to study the development of LiD in 5 separate longitudinal cohorts. We performed a meta-analysis to combine the results of genetic association from each study based on a fixed effects model weighting the effect sizes by the inverse of their standard error. The selection criteria was specific to each cohort. We studied individuals that were genotyped from each cohort and that passed our analysis specific inclusion criteria. Main Outcomes and Measures: We measured the time for PD patients on levodopa treatment to develop LiD as defined by reaching a score higher or equal than 2 from the MDS-UPDRS part IV, item 1, which is equivalent to a range of 26%-50% of the waking time with dyskinesia. We carried out a genome-wide analysis of the hazard ratio and the association of genome-wide SNPs with the probability of developing LiD using cox proportional hazard models (CPH). Results: This study included 2,784 PD patients of European ancestry, of whom 14.6% developed LiD. Consistent with previous studies, we found female gender (HR = 1.35, SE = 0.11, P = 0.007) and younger age at onset (HR = 1.8, SE = 0.14, P = 2 × 10 -5 ) to increase the probability of developing LiD. We identified three loci significantly associated with time-to-LiD onset. rs72673189 on chromosome 1 (HR = 2.77, SE = 0.18, P = 1.53 × 10 -8 ) located in the LRP8 locus, rs189093213 on chromosome 4 (HR = 3.06,, SE = 0.19, P = 2.81 × 10 -9 ) in the non-coding RNA LINC02353 locus, and rs180924818 on chromosome 16 (HR = 3.13, SE = 0.20, P = 6.27 × 10 -9 ) in the XYLT1 locus. Subsequent colocalization analyses on chromosome 1 identified DNAJB4 as a candidate gene associated with LiD through a change in gene expression. We computed a PRS based on our GWAS meta-analysis and found high accuracy to stratify between PD-LID and PD (AUC 83.9). We also performed a stepwise regression analysis for baseline features selection associated with LiD status. We found baseline anxiety status to be significantly associated with LiD (OR = 1.14, SE = 0.03, P = 7.4 × 10 -5 ). Finally, we performed a candidate variant analysis and found that genetic variability in ANKK1 ( rs1800497 , Beta = 0.24, SE = 0.09, P = 8.89 × 10 -3 ) and BDNF ( rs6265 , Beta = 0.19, SE = 0.10, P = 4.95 × 10 -2 ) loci were significantly associated with time to LiD in our large meta-analysis. Conclusion: In this association study, we have found three novel genetic variants associated with LiD, as well as confirming reports that variability in ANKK1 and BDNF loci were significantly associated with LiD probability. A PRS nominated from our time-to-LiD meta-analysis significantly differentiated between PD-LiD and PD. In addition, we have found female gender, young PD onset and anxiety to be significantly associated with LiD.
RESUMO
Up to 80% of Parkinson's disease patients develop dementia, but time to dementia varies widely from motor symptom onset. Dementia with Lewy bodies presents with clinical features similar to Parkinson's disease dementia, but cognitive impairment precedes or coincides with motor onset. It remains controversial whether dementia with Lewy bodies and Parkinson's disease dementia are distinct conditions or represent part of a disease spectrum. The biological mechanisms underlying disease heterogeneity, in particular the development of dementia, remain poorly understood, but will likely be key to understanding disease pathways and ultimately therapy development. Previous genome-wide association studies in Parkinson's disease and dementia with Lewy bodies/Parkinson's disease dementia have identified risk loci differentiating patients from controls. We collated data for 7,804 patients of European ancestry from Tracking Parkinson's (PRoBaND), The Oxford Discovery Cohort, and AMP-PD. We conducted a discrete phenotype genome-wide association studies comparing Lewy body diseases with and without dementia to decode disease heterogeneity by investigating the genetic drivers of dementia in Lewy body diseases. We found that risk alleles rs429358 tagging APOEe4 and rs7668531 near the MMRN1 and SNCA-AS1 genes, increase the odds of developing dementia and that an intronic variant rs17442721 tagging LRRK2 G2019S, on chromosome 12 is protective against dementia. These results should be validated in autopsy confirmed cases in future studies.
RESUMO
Open science and collaboration are necessary to facilitate the advancement of Parkinson's disease (PD) research. Hackathons are collaborative events that bring together people with different skill sets and backgrounds to generate resources and creative solutions to problems. These events can be used as training and networking opportunities, thus we coordinated a virtual 3-day hackathon event, during which 49 early-career scientists from 12 countries built tools and pipelines with a focus on PD. Resources were created with the goal of helping scientists accelerate their own research by having access to the necessary code and tools. Each team was allocated one of nine different projects, each with a different goal. These included developing post-genome-wide association studies (GWAS) analysis pipelines, downstream analysis of genetic variation pipelines, and various visualization tools. Hackathons are a valuable approach to inspire creative thinking, supplement training in data science, and foster collaborative scientific relationships, which are foundational practices for early-career researchers. The resources generated can be used to accelerate research on the genetics of PD.