Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Popul Environ ; 45(3): 12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350772

RESUMO

Rural populations are particularly exposed to increasing weather variability, notably through agriculture. In this paper, we exploit longitudinal data for Turkish provinces from 2008 to 2018 together with precipitation records over more than 30 years to quantify how variability in a standardized precipitation index (SPI) affects out-migration as an adaptation mechanism. Doing so, we document the role of three potential causal channels: per capita income, agricultural output, and local conflicts. Our results show that negative SPI shocks (droughts) are associated with higher out-migration in rural provinces. A mediated-moderator approach further suggests that changes in per capita income account for more than one quarter of the direct effect of droughts on out-migration, whereas agricultural output is only relevant for provinces in the upper quartile of crop production. Finally, we find evidence that local conflict fatalities increase with drought and trigger out-migration, although this channel is distinct from the direct effect of SPI shocks on out-migration.

2.
Int J Biometeorol ; 62(9): 1755-1762, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30003338

RESUMO

The length of the snow-free season is a key factor regulating plant phenology and shaping plant community composition in cold regions. While global warming has significantly advanced the time of snowmelt and the growth period at all elevations in the Swiss Alps, it remains unclear if it has altered the likelihood of frost risk for alpine plants. Here, we analyzed the influence of the snowmelt timing on the risk of frost exposure for subalpine and alpine plants shortly after snowmelt, i.e., during their most vulnerable period to frost at the beginning of their growth period. Furthermore, we tested whether recent climate warming has changed the risk of exposure of plants to frost after snowmelt. We analyzed snow and air temperature data in the Swiss Alps using six weather stations covering the period 1970-2016 and 77 weather stations covering the period 1998-2016, spanning elevations from 1418 to 2950 m asl. When analyzed across all years within each station, our results showed strong negative relationships between the time of snowmelt and the frequency and intensity of frost during the most vulnerable period to frost for subalpine and alpine plants, indicating a higher frost risk damage for plants during years with earlier snowmelt. However, over the last 46 years, the time of snowmelt and the last spring frost date have advanced at similar rates, so that the frequency and intensity of frost during the vulnerable period for plants remained unchanged.


Assuntos
Mudança Climática , Plantas , Neve , Temperatura , Risco , Estações do Ano , Suíça
3.
Int J Biometeorol ; 61(2): 349-361, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27539023

RESUMO

In alpine environments, the growing season is severely constrained by low temperature and snow. Here, we aim at determining the climatic factors that best explain the interannual variation in spring growth onset of alpine plants, and at examining whether photoperiod might limit their phenological response during exceptionally warm springs and early snowmelts. We analysed 17 years of data (1998-2014) from 35 automatic weather stations located in subalpine and alpine zones ranging from 1560 to 2450 m asl in the Swiss Alps. These stations are equipped with ultrasonic sensors for snow depth measurements that are also able to detect plant growth in spring and summer, giving a unique opportunity to analyse snow and climate effects on alpine plant phenology. Our analysis showed high phenological variation among years, with one exceptionally early and late spring, namely 2011 and 2013. Overall, the timing of snowmelt and the beginning of plant growth were tightly linked irrespective of the elevation of the station. Snowmelt date was the best predictor of plant growth onset with air temperature after snowmelt modulating the plants' development rate. This multiple series of alpine plant phenology suggests that currently alpine plants are directly tracking climate change with no major photoperiod limitation.


Assuntos
Desenvolvimento Vegetal , Estações do Ano , Neve , Altitude , Solo , Suíça , Temperatura , Ultrassom
4.
Environ Monit Assess ; 185(6): 4483-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22915222

RESUMO

Quality control of long-term monitoring data of thousands and millions of individual records as present in meteorological data is cumbersome. In such data series, sensor drifts, stalled values, and scale shifts may occur and potentially result in flawed conclusions if not noticed and handled properly. However, there is no established standard procedure to perform quality control of high-frequency meteorological data. In this paper, we outline a procedure to remove sensor drift in high-frequency data series using the example of 15-year-long sets of hourly relative humidity (RH) data from 28 stations subdivided into 202 individual sensor operation periods. The procedure involves basic quality control, relative homogeneity testing, and drift removal. Significant sensor drifts were observed in 40.6 % of all sensor operation periods. The drifts varied between data series and depended in a complex, usually inconsistent way on absolute RH values; within single series for instance, a drift could be negative in the lower RH range and positive in the upper RH range. Detrending changed RH values by, on average, 1.96 %. For one fifth of the detrended data, adjustments were 2.75 % and more of the measured value, and in one tenth 4.75 % and more. Overall, drifts were strongest for RH values close to 100 %. The detrending procedure proved to effectively remove sensor drifts. The principles of the procedure also apply to other meteorological parameters and more generally to any time series of data for which comparable reference data are available.


Assuntos
Monitoramento Ambiental/métodos , Tempo (Meteorologia) , Umidade , Meteorologia , Estações do Ano
5.
Curr Opin Insect Sci ; 50: 100895, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35240333

RESUMO

Climate change has various and complex effects on crop pests worldwide. In this review, we detail the role of the main climatic parameters related to temperature and precipitation changes that might have direct or indirect impacts on pest species. Changes in these parameters are likely to favour or to limit pest species, depending on their ecological context. On a global scale, crop pests are expected to benefit from current and future climate change. However, substantial differences appear across biomes and species. Temperate regions are generally more likely to face an increase in pest attacks compared with tropical regions. Therefore, climate change effects should be studied in the context of local climate and local ecological interactions across biomes.


Assuntos
Mudança Climática , Ecossistema , Animais , Temperatura
6.
Biol Rev Camb Philos Soc ; 96(5): 1816-1835, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33908168

RESUMO

Mountain areas are biodiversity hotspots and provide a multitude of ecosystem services of irreplaceable socio-economic value. In the European Alps, air temperature has increased at a rate of about 0.36°C decade-1 since 1970, leading to glacier retreat and significant snowpack reduction. Due to these rapid environmental changes, this mountainous region is undergoing marked changes in spring phenology and elevational distribution of animals, plants and fungi. Long-term monitoring in the European Alps offers an excellent natural laboratory to synthetize climate-related changes in spring phenology and elevational distribution for a large array of taxonomic groups. This review assesses the climatic changes that have occurred across the European Alps during recent decades, spring phenological changes and upslope shifts of plants, animals and fungi from evidence in published papers and previously unpublished data. Our review provides evidence that spring phenology has been shifting earlier during the past four decades and distribution ranges show an upwards trend for most of the taxonomic groups for which there are sufficient data. The first observed activity of reptiles and terrestrial insects (e.g. butterflies) in spring has shifted significantly earlier, at an average rate of -5.7 and -6.0 days decade-1 , respectively. By contrast, the first observed spring activity of semi-aquatic insects (e.g. dragonflies and damselflies) and amphibians, as well as the singing activity or laying dates of resident birds, show smaller non-significant trends ranging from -1.0 to +1.3 days decade-1 . Leaf-out and flowering of woody and herbaceous plants showed intermediate trends with mean values of -2.4 and -2.8 days decade-1 , respectively. Regarding species distribution, plants, animals and fungi (N = 2133 species) shifted the elevation of maximum abundance (optimum elevation) upslope at a similar pace (on average between +18 and +25 m decade-1 ) but with substantial differences among taxa. For example, the optimum elevation shifted upward by +36.2 m decade-1 for terrestrial insects and +32.7 m decade-1 for woody plants, whereas it was estimated to range between -1.0 and +11 m decade-1 for semi-aquatic insects, ferns, birds and wood-decaying fungi. The upper range limit (leading edge) of most species also shifted upslope with a rate clearly higher for animals (from +47 to +91 m decade-1 ) than for plants (from +17 to +40 m decade-1 ), except for semi-aquatic insects (-4.7 m decade-1 ). Although regional land-use changes could partly explain some trends, the consistent upward shift found in almost all taxa all over the Alps is likely reflecting the strong warming and the receding of snow cover that has taken place across the European Alps over recent decades. However, with the possible exception of terrestrial insects, the upward shift of organisms seems currently too slow to track the pace of isotherm shifts induced by climate warming, estimated at about +62 to +71 m decade-1 since 1970. In the light of these results, species interactions are likely to change over multiple trophic levels through phenological and spatial mismatches. This nascent research field deserves greater attention to allow us to anticipate structural and functional changes better at the ecosystem level.


Assuntos
Borboletas , Odonatos , Animais , Mudança Climática , Ecossistema , Fungos , Plantas , Estações do Ano , Temperatura
7.
Int J Biometeorol ; 50(1): 40-7, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15875222

RESUMO

Pine mistletoe (Viscum album ssp. austriacum) is common in natural Scots pine (Pinus sylvestris L.) forests in the alpine Rhone Valley, Switzerland. This semi-parasite, which is regarded as an indicator species for temperature, increases the drought stress on trees and may contribute to the observed pine decline in the region. We recorded mistletoes on representative plots of the Swiss National Forest Inventory ranging from 450 to 1,550 m a.s.l. We found mistletoe on 37% of the trees and on 56% of all plots. Trees infested with mistletoe had a significantly higher mortality rate than non-infested trees. We compared the current mistletoe occurrence with records from a survey in 1910. The current upper limit, 1,250 m, is roughly 200 m above the limit of 1,000-1,100 m found in the earlier survey 100 years ago. Applying a spatial model to meteorological data we obtained monthly mean temperatures for all sites. In a logistic regression mean winter temperature, pine proportion and geographic exposition significantly explained mistletoe occurrence. Using mean monthly January and July temperatures for 1961-1990, we calculated Skre's plant respiration equivalent (RE) and regressed it against elevation to obtain the RE value at the current mistletoe elevation limit. We used this RE value and temperature from 1870-1899 in the regression and found the past elevation limit to be at 1,060 m, agreeing with the 1910 survey. For the predicted temperature rise by 2030, the limit for mistletoe would increase above 1,600 m altitude.


Assuntos
Efeito Estufa , Viscum album/crescimento & desenvolvimento , Altitude , Clima , Modelos Teóricos , Suíça , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA