Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Genet Mol Biol ; 43(2): e20180291, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32353100

RESUMO

Phylogenetic niche conservatism can be investigated at multiple scales on an explicit geographical context. Haplotype-based comparative analyses of lineages occupying the same region, and thus subjected to similar environmental factors, allow decoupling shared evolutionary and ecological patterns, as well as multiple dimensions of adaptive diversification. Here we aimed to assess the role of environmental drivers on diversification of subtropical grassland, based on haplotypic diversity of two plant genera. We sampled two closely related and co-distributed grassland plant genera, Petunia and Calibrachoa, across their entire distribution area. Eigenvectors extracted from pairwise distances based on chloroplast DNA haplotypes were used to fit Phylogenetic Signal-Representation (PSR) curves to estimate evolutionary patterns in 19 bioclimatic variables and altitude. The PSR curves showed that altitude, precipitation, and temperature variables changed at different rates with haplotype differentiation. Altitude and temperature traits evolved under conditions closer to a neutral dynamics, whereas precipitation traits differentiated following more complex models. Our results indicated that the diversification in the two genera was more limited by precipitation conditions. Based on these novel findings, we suggest that future studies should test the possible impact of precipitation variables on the process of ecological differentiation in these genera.

2.
BMC Evol Biol ; 17(1): 234, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29187208

RESUMO

BACKGROUND: The classification of closely related plants is not straightforward. These morphologically similar taxa frequently maintain their inter-hybridization potential and share ancestral polymorphisms as a consequence of their recent divergence. Under the biological species concept, they may thus not be considered separate species. The Petunia integrifolia complex is especially interesting because, in addition to the features mentioned above, its taxa share a pollinator, and their geographical ranges show multiple overlaps. Here, we combined plastid genome sequences, nuclear microsatellites, AFLP markers, ecological niche modelling, and bioregions analysis to investigate the genetic variability between the different taxa of the P. integrifolia complex in a comprehensive sample covering the entire geographical range of the complex. RESULTS: Results from molecular markers did not fully align with the current taxonomic classification. Niche modelling and bioregions analyses revealed that taxa were associated with different ecological constraints, indicating that the habitat plays an important role in preserving species boundaries. For three taxa, our analyses showed a mostly conserved, non-overlapping geographical distribution over time. However, for two taxa, niche modelling found an overlapping distribution over time; these taxa were also associated with the same bioregions. CONCLUSIONS: cpDNA markers were better able to discriminate between Petunia taxa than SSRs and AFLPs. Overall, our results suggest that the P. integrifolia complex represents a continuum of individuals from distant and historically isolated populations, which share some morphological traits, but are established in four different evolutionary lineages.


Assuntos
Ecossistema , Variação Genética , Geografia , Petunia/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , DNA de Cloroplastos/genética , Marcadores Genéticos , Haplótipos/genética , Repetições de Microssatélites/genética , Filogenia , Especificidade da Espécie
3.
Mol Phylogenet Evol ; 81: 19-28, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25196589

RESUMO

The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome.


Assuntos
Petunia/classificação , Filogenia , Animais , Teorema de Bayes , DNA de Cloroplastos/genética , DNA de Plantas/genética , Evolução Molecular , Flores/anatomia & histologia , Marcadores Genéticos , Funções Verossimilhança , Modelos Genéticos , Petunia/genética , Análise de Sequência de DNA
4.
Braz J Infect Dis ; 24(3): 191-200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32450055

RESUMO

INTRODUCTION: Cytomegalovirus may cause severe disease in immunocompromised patients. Nowadays, quantitative polymerase chain reaction is the gold-standard for both diagnosis and monitoring of cytomegalovirus infection. Most of these assays use cytomegalovirus automated molecular kits which are expensive and therefore not an option for small laboratories, particularly in the developing world. OBJECTIVE: This study aimed to optimize and validate an in-house cytomegalovirus quantitative polymerase chain reaction test calibrated using the World Health Organization Standards, and to perform a cost-minimization analysis, in comparison to a commercial cytomegalovirus quantitative polymerase chain reaction test. STUDY DESIGN: The methodology consisted of determining: optimization, analytical sensitivity, analytical specificity, precision, curve variability analysis, and inter-laboratorial reproducibility. Patients (n=30) with known results for cytomegalovirus tested with m2000 RealTime System (Abbott Laboratories, BR) were tested with the in-house assay, as well as patients infected with other human herpes virus, in addition to BK virus. A cost-minimization analysis was performed, from a perspective of the laboratory, assuming diagnostic equivalence of the methodologies applied in the study. RESULTS: The in-house assay had a limit of detection and quantification of 60.3IU/mL, with no cross-reactivity with the other viral agents tested. Moreover, the test was precise and had a R2 of 0.954 when compared with the m2000 equipment. The cost analysis showed that the assay was economically advantageous costing a median value of 37.8% and 82.2% in comparison to the molecular test in use at the hospital and the m2000 equipment, respectively. CONCLUSIONS: These results demonstrated that in-house quantitative polymerase chain reaction testing is an attractive alternative in comparison to automated molecular platforms, being considerably less expensive and as efficacious as the commercial methods.


Assuntos
Infecções por Citomegalovirus/diagnóstico , Citomegalovirus , Kit de Reagentes para Diagnóstico , Custos e Análise de Custo , DNA Viral , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Viral
5.
Braz. j. infect. dis ; 24(3): 191-200, May-June 2020. tab, graf
Artigo em Inglês | LILACS, Coleciona SUS (Brasil) | ID: biblio-1132446

RESUMO

ABSTRACT Introduction: Cytomegalovirus may cause severe disease in immunocompromised patients. Nowadays, quantitative polymerase chain reaction is the gold-standard for both diagnosis and monitoring of cytomegalovirus infection. Most of these assays use cytomegalovirus automated molecular kits which are expensive and therefore not an option for small laboratories, particularly in the developing world. Objective: This study aimed to optimize and validate an in-house cytomegalovirus quantitative polymerase chain reaction test calibrated using the World Health Organization Standards, and to perform a cost-minimization analysis, in comparison to a commercial cytomegalovirus quantitative polymerase chain reaction test. Study design: The methodology consisted of determining: optimization, analytical sensitivity, analytical specificity, precision, curve variability analysis, and inter-laboratorial reproducibility. Patients (n = 30) with known results for cytomegalovirus tested with m2000 RealTime System (Abbott Laboratories, BR) were tested with the in-house assay, as well as patients infected with other human herpes virus, in addition to BK virus. A cost-minimization analysis was performed, from a perspective of the laboratory, assuming diagnostic equivalence of the methodologies applied in the study. Results: The in-house assay had a limit of detection and quantification of 60.3 IU/mL, with no cross-reactivity with the other viral agents tested. Moreover, the test was precise and had a R 2 of 0.954 when compared with the m2000 equipment. The cost analysis showed that the assay was economically advantageous costing a median value of 37.8% and 82.2% in comparison to the molecular test in use at the hospital and the m2000 equipment, respectively. Conclusions: These results demonstrated that in-house quantitative polymerase chain reaction testing is an attractive alternative in comparison to automated molecular platforms, being considerably less expensive and as efficacious as the commercial methods.


Assuntos
Humanos , Kit de Reagentes para Diagnóstico , Infecções por Citomegalovirus/diagnóstico , Citomegalovirus , DNA Viral , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Carga Viral , Custos e Análise de Custo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA