Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 136(17): 174507, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22583249

RESUMO

We report results of development of a self consistent tight binding model for water. The model explicitly describes the electrons of the liquid self consistently, allows dissociation of the water and permits fast direct dynamics molecular dynamics calculations of the fluid properties. It is parameterized by fitting to first principles calculations on water monomers, dimers, and trimers. We report calculated radial distribution functions of the bulk liquid, a phase diagram and structure of solvated protons within the model as well as ac conductivity of a system of 96 water molecules of which one is dissociated. Structural properties and the phase diagram are in good agreement with experiment and first principles calculations. The estimated DC conductivity of a computational sample containing a dissociated water molecule was an order of magnitude larger than that reported from experiment though the calculated ratio of proton to hydroxyl contributions to the conductivity is very close to the experimental value. The conductivity results suggest a Grotthuss-like mechanism for the proton component of the conductivity.


Assuntos
Elétrons , Modelos Químicos , Modelos Teóricos , Prótons , Água/química , Simulação por Computador , Transporte de Íons , Simulação de Dinâmica Molecular , Teoria Quântica , Termodinâmica
2.
J Phys Chem B ; 110(16): 8363-71, 2006 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-16623521

RESUMO

We have carried out a hybrid density functional study of mechanisms for oxidative dehydrogenation of propane on the (010) surface of V2O5. The surface was modeled using both vanadium oxide clusters and a periodic slab. We have investigated a Mars-van Krevelen mechanism that involves stepwise adsorption of the propane at an oxygen site followed by desorption of a water molecule and propene, and subsequent adsorption of an oxygen molecule to complete the catalytic cycle. The potential energy surface is found to have large barriers, which are lowered somewhat when the possibility of a triplet state is considered. The barriers for propane adsorption and propene elimination are 45-60 kcal/mol. The highest energy on the potential energy surface at the B3LYP/6-31G* level of theory is about 80 kcal/mol above the energy of the reactants and corresponds to formation of an oxygen vacancy after water elimination. Subsequent addition of an oxygen molecule to fill the vacancy is predicted to be energetically downhill. The reactions of propane at a bridging oxygen site and at a vanadyl site have similar energetics. The key results of the cluster calculations are confirmed by periodic calculations. Factors that may lower the barriers on the potential energy surface, including the interaction of vanadium oxide clusters with a support material and a concerted reaction with O2, are discussed.

3.
Science ; 328(5975): 224-8, 2010 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-20378815

RESUMO

Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag3 clusters and approximately 3.5-nanometer Ag nanoparticles on alumina supports can catalyze this reaction with only a negligible amount of carbon dioxide formation and with high activity at low temperatures. Density functional calculations show that, relative to extended silver surfaces, oxidized silver trimers are more active and selective for epoxidation because of the open-shell nature of their electronic structure. The results suggest that new architectures based on ultrasmall silver particles may provide highly efficient catalysts for propylene epoxidation.

4.
Phys Rev Lett ; 96(7): 075506, 2006 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-16606108

RESUMO

The adsorption of carbon dimers on carbon nanotubes leads to a rich spectrum of structures and electronic structure modifications. Barriers for the formation of carbon dimer induced defects are calculated and found to be considerably lower than those for the Stone-Wales defect. The electronic states introduced by the ad-dimers depend on defect structure and tube type and size. Multiple carbon ad-dimers provide a route to structural engineering of patterned tubes that may be of interest for nanoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA