RESUMO
We present a femtosecond time-resolved optical pump-soft x-ray probe photoemission study in which we follow the dynamics of charge transfer at the interface of water and anatase TiO_{2}(101). By combining our observation of transient oxygen O 1s core level peak shifts at submonolayer water coverages with Ehrenfest molecular dynamics simulations we find that ultrafast interfacial hole transfer from TiO_{2} to molecularly adsorbed water is completed within the 285 fs time resolution of the experiment. This is facilitated by the formation of a new hydrogen bond between an O_{2c} site at the surface and a physisorbed water molecule. The calculations fully corroborate our experimental observations and further suggest that this process is preceded by the efficient trapping of the hole at the surface of TiO_{2} by hydroxyl species (-OH), that form following the dissociative adsorption of water. At a water coverage exceeding a monolayer, interfacial charge transfer is suppressed. Our findings are directly applicable to a wide range of photocatalytic systems in which water plays a critical role.
RESUMO
Charge transfer (CT) at avoided crossings of excited ionized states of argon dimers is observed using a two-color pump-probe experiment at the free-electron laser in Hamburg (FLASH). The process is initiated by the absorption of three 27-eV-photons from the pump pulse, which leads to the population of Ar2+*-Ar states. Due to nonadiabatic coupling between these one-site doubly ionized states and two-site doubly ionized states of the type Ar+*-Ar+, CT can take place leading to the population of the latter states. The onset of this process is probed by a delayed infrared (800 nm) laser pulse. The latter ionizes the dimers populating repulsive Ar2+ -Ar+ states, which then undergo a Coulomb explosion. From the delay-dependent yields of the obtained Ar2+ and Ar+ ions, the lifetime of the charge-transfer process is extracted. The obtained experimental value of (531 ± 136) fs agrees well with the theoretical value computed from Landau-Zener probabilities.
RESUMO
Laser-induced adiabatic alignment and mixed-field orientation of 2,6-difluoroiodobenzene (C6H3F2I) molecules are probed by Coulomb explosion imaging following either near-infrared strong-field ionization or extreme-ultraviolet multi-photon inner-shell ionization using free-electron laser pulses. The resulting photoelectrons and fragment ions are captured by a double-sided velocity map imaging spectrometer and projected onto two position-sensitive detectors. The ion side of the spectrometer is equipped with a pixel imaging mass spectrometry camera, a time-stamping pixelated detector that can record the hit positions and arrival times of up to four ions per pixel per acquisition cycle. Thus, the time-of-flight trace and ion momentum distributions for all fragments can be recorded simultaneously. We show that we can obtain a high degree of one-and three-dimensional alignment and mixed-field orientation and compare the Coulomb explosion process induced at both wavelengths.
RESUMO
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
RESUMO
We explore time-resolved Coulomb explosion induced by intense, extreme ultraviolet (XUV) femtosecond pulses from a free-electron laser as a method to image photo-induced molecular dynamics in two molecules, iodomethane and 2,6-difluoroiodobenzene. At an excitation wavelength of 267 nm, the dominant reaction pathway in both molecules is neutral dissociation via cleavage of the carbon-iodine bond. This allows investigating the influence of the molecular environment on the absorption of an intense, femtosecond XUV pulse and the subsequent Coulomb explosion process. We find that the XUV probe pulse induces local inner-shell ionization of atomic iodine in dissociating iodomethane, in contrast to non-selective ionization of all photofragments in difluoroiodobenzene. The results reveal evidence of electron transfer from methyl and phenyl moieties to a multiply charged iodine ion. In addition, indications for ultrafast charge rearrangement on the phenyl radical are found, suggesting that time-resolved Coulomb explosion imaging is sensitive to the localization of charge in extended molecules.
RESUMO
The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.
RESUMO
Effects of environmental changes due to D(2)O/H(2)O substitution and cryosolvent addition on the energetics of the special pair and the rate constants of forward and back electron transfer reactions in the picosecond-nanosecond time domain have been studied in isolated reaction centers (RC) of the anaxogenic purple bacterium Rhodobacter sphaeroides. The following results were obtained: (i). replacement of H(2)O by D(2)O or addition of either 70% (v/v) glycerol or 35% (v/v) DMSO do not influence the absorption spectra; (ii). in marked contrast to this invariance of absorption, the maxima of fluorescence spectra are red shifted relative to control by 3.5, 6.8 and 14.5 nm for RCs suspended in glycerol, D(2)O or DMSO, respectively; (iii). D(2)O/H(2)O substitution or DMSO addition give rise to an increase of the time constants of charge separation (tau(e)), and Q(A)(-) formation (tau(Q)) by a factors of 2.5-3.1 and 1.7-2.5, respectively; (iv). addition of 70% glycerol is virtually without effect on the values of tau(e) and tau(Q); (v). the midpoint potential E(m) of P/P(+) is shifted by about 30 and 45 mV towards higher values by addition of 70% glycerol and 35% DMSO, respectively, but remains invariant to D(2)O/H(2)O exchange; and (vi). an additional fast component with tau(1)=0.5-0.8 ns in the kinetics of charge recombination P(+)H(A)(-)-->P*(P)H(A) emerges in RC suspensions modified either by D(2)O/H(2)O substitution or by DMSO treatment. The results have been analysed with special emphasis on the role of deformations of hydrogen bonds for the solvation mechanism of nonequilibrium states of cofactors. Reorientation of hydrogen bonds provides the major contribution of the very fast environmental response to excitation of the special pair P. The Gibbs standard free energy gap between 1P* and P(+)B(A)(-) due to solvation is estimated to be approximately 70, 59 and 48 meV for control, D(2)O- and DMSO-treated RC samples, respectively.